Transfer of Learning

In  sport,  transfer  of  learning  is  generally  defined as  the  influence  of  previous  experience  of  performing  a  skill  on  the  learning  of  a  new  skill  or on performance of the same skill in a new context. This influence may be positive or negative. Positive transfer  occurs  when  previous  experience  of  performing a skill is beneficial for learning a new skill or for performance of the same skill in a different context. For example, a hockey player might reasonably expect that previous experience of striking a  ball  with  a  hockey  stick  will  transfer  positively to  learning  a  golf  swing,  and  most  golfers  hope that practicing their swing in the car park before a round will transfer positively to the golf course. Negative transfer occurs when previous experience of a skill inhibits learning a new skill or disrupts performance  of  the  same  skill  in  a  different  context. For example, groundstrokes in tennis, which are  best  performed  with  a  relatively  firm  wrist, usually transfer negatively to squash shots, which are  best  performed  with  a  flexible  wrist,  or  vice versa.  In  this  entry,  testing  and  assessing  transfer of  learning  in  sport,  theories  of  transfer,  and  the significance of transfer in sport are discussed.

Testing for Transfer

Researchers commonly use a simple experimental design to test for the influence of previous experience  of  a  skill  on  learning  a  new  skill  (intertask transfer) or on performing the same skill in a new context (intratask transfer). One group of participants  (the  experimental  group)  practices  the  first skill and a second group (the control group) does not practice. Both groups are then tested on either a second skill (sometimes called the criterion skill) or  in  a  different  context.  Any  pre or  post differences between the groups on the second test maybe attributed to positive or negative transfer.

Assessing Transfer

There  are  many  ways  to  quantify  the  amount  of transfer from one skill to another skill or from one context  to  another  context.  Although  no  method is  infallible,  the  most  common  method  used  by researchers is to compute the percentage of transfer,  which  is  the  proportional  difference  in  performance  scores  of  the  experimental  and  control groups on the second skill or context:


To   illustrate,   a   researcher   might   conduct   a transfer  experiment  to  examine  whether  learning darts for 1 week enhances or inhibits archery performance. The researcher can use a transfer test to compare  the  archery  performance  of  an  experimental group that practiced only their darts during the  week  immediately  before  or  a  control  group that  was  prevented  from  practicing.  Performance during the first ten trials of the archery task might reveal   that   the   experimental   group   strikes   the bull’s-eye of the target on an average of four occasions, whereas the control group strikes the bull’s eye  on  an  average  of  one  occasion.  Applying  the above formula,


the experimental group shows 60% transfer, suggesting  that  they  perform  60%  better  at  archery compared with the control group. The amount of transfer is usually estimated on the first few trials of  performance  because  performance  by  the  control  group  on  later  trials  may  be  confounded  by the practice that group is receiving. If the measure of performance indicates that lower values represent  better  performance  (e.g.,  error,  speed),  then the  formula  should  be  modified  by  reversing  the numerator.

Theories of Transfer

Research on transfer of learning began more than a  century  ago,  when  studies  were  conducted  to examine  the  theory  of  formal  discipline,  which proposed that studying formal disciplines, such as Latin, logic, or mathematics, caused positive transfer  to  thinking  in  general  by  training  the  mind’s faculties.  William  James,  however,  tested  the principle  on  himself  by  memorizing  a  new  poem each day. His ability to learn new poems was not improved  by  this  self-imposed  case  study.  Later, Edward Thorndike, his student, as well as Robert Woodworth,  further  refuted  the  theory  of  formal discipline,  arguing  that  good  thinkers  are  more likely  to  study  such  disciplines  so  when  they  are successful at other disciplines, it only appears that they  have  benefited  from  their  earlier  studies  of formal  disciplines.  Nevertheless,  some  evidence continues  to  support  the  concept  of  formal  disciplines  transfer.  For  example,  it  has  been  shown that  learning  probability  statistics  improves  general reasoning skills.

Identical Elements Theory

Thorndike  later  formulated  the  theory  of  identical elements, in which he argued that earlier learning is only advantageous if the second task to be learned has elements that are identical to those of the first task. The amount of transfer thus depends on the similarity between the elements of two skills or  of  two  performance  contexts.  The  problem with  this  theory  was  that  it  did  not  specify  what the  elements  were  or  how  their  similarities  were to  be  assessed.  Two  possible  ways  to  specify  an element in the context of motor learning are that (1)  it  is  any  observable  movement  component  of a  skill,  such  as  the  swing  of  the  leg  in  a  kick;  or (2)  it  is  any  task-specific  coordination  dynamic, such as the synergy of the elbow, wrist, and fingers when throwing a Frisbee. Predictions on the basis of  common  elements  between  two  skills  suggest that the amount of transfer between a tennis serve and a golf putt is likely to be less than between a tennis serve and a volleyball serve because a tennis serve  has  more  elements  in  common  with  a  volleyball  serve  than  a  golf  putt.  Predictions  on  the basis  of  common  elements  between  two  contexts or domains suggest that learning to anticipate the direction  of  a  tennis  serve  by  reacting  in  real  life will yield more positive transfer to game play than learning to anticipate the direction of a tennis serve by reacting in a video game.

The Theory of Generalization

Subsequent efforts to understand transfer included cognitive  factors.  For  example,  Charles  Judd argued that psychological factors, such as motivation,  combine  with  learning  of  general  principles to give rise to transfer. Judd’s theory of generalization  suggested  that  transfer  occurs  when  general principles  learned  in  one  situation  are  applied  in a new situation. Children aware of the principles of light refraction, for instance, throw darts more accurately at a target submerged under the water than children unaware of the principles.

Transfer-Appropriate Processing Theory

Transfer-appropriate  processing  theory  suggests that  learning  is  best  if  practice  involves  processing  activities  that  are  similar  to  those  activities which occur during transfer. To structure an optimal  learning  environment  or  encourage  positive transfer of learning, a practitioner therefore must match the processing activities in which the learner engages  during  practice  to  the  cognitive  processing activities that are associated with the criterion skill  or  when  performing  in  a  different  context. For example, a training protocol for kicking penalties  in  soccer,  which  incorporates  the  processing associated with kicking under psychological pressure, would be expected to produce more positive transfer to a penalty kick in the World Cup final than a training protocol that does not incorporate such  processing.  Transfer-appropriate  processing theory also offers an explanation of the phenomenon  known  as  bilateral  transfer;  the  processing activities  involved  in  performing  a  skill  with  one limb  are  likely  to  mimic  the  processing  activities involved in performing the same skill with another limb,  thus  facilitating  transfer  between  the  two. This  explanation  is  supported  by  recent  work  in which  functional  magnetic  resonance  imaging (fMRI) showed that brain activation at the supplementary motor area (SMA) is positively correlated with  the  amount  of  transfer  between  learning  a sequential finger tapping skill with the right hand and performing the same skill with the left hand. Such  transfer  disappeared  when  SMA  activation was inhibited by the use of transcranial magnetic stimulation (TMS).

Despite  such  findings,  neither  transfer-appropriate processing theory nor any other theory can fully  explain  the  transfer  effect.  Much  remains unclear about transfer of learning occurrence.

The Importance of Transfer

From both theoretical and practical points of view, however, the principle of transfer is important for understanding  the  effects  of  practice  on  performance. This is perhaps best exemplified by recent advances  in  our  understanding  of  how  expertise develops  in  sport.  Experts  often  display  developmental histories that are characterized by participating in many other sports. Transfer of learning is an obvious explanation for such a phenomenon. Experts, for example, are better than non-experts at  recalling  patterns  of  play  from  not  only  their own  sport  but  also  sports  in  which  they  are  not expert,  suggesting  that  learning  to  recognize  patterns  of  play  in  one  sport  transfers  to  another  to some extent.

With  respect  to  motor  tasks,  the  consensus probably  is  that,  although  transfer  is  generally positive when it comes to motor tasks, the effects are  trivial  unless  the  tasks  are  almost  duplicates. Nevertheless, the principle of transfer implies that the practice of one skill will affect the learning of subsequent  skills,  which  suggests  that  sequencing skills to be learned in a logical progression is important  when  designing  training  protocols  or programs. For example, when physical educators, coaches, or therapists teach motor skills in school, at  a  club,  or  during  rehabilitation,  they  often follow the simple-to-complex rule so that learners progress from fundamental skills through to complex skills that require mastery of the basic skills. Additionally,  the  principle  of  transfer  informs diversity  of  instructional  and  training  methods. Modern  technology  is  advancing  so  quickly,  for instance, that surgeons are able to train on simulators that mimic more and more of the underlying  similarities  of  real  surgery  on  actual  patients. Thus, the costs and the risks associated with training can be largely reduced. Indeed, virtual reality training, which allows practice of a skill in three dimensional, computer-generated environments, is becoming more accessible and thus more popular, as a training procedure that relies on the principle of  transfer.  Finally,  the  principle  of  transfer  provides the best assessment of the effectiveness of a practice routine or instruction method. For sports coaches,  the  transfer  test  is  whichever  game  or competition that the team or the athlete was preparing for. For piano teachers, the transfer test may be next week’s recital at school. For physical therapists, the transfer test may take place the moment the  patient  leaves  the  clinic  or  perhaps  later  at home.  Performance  in  the  transfer  test,  whatever the test may be, is the true test of practice.


  1. Ellis, H. C. (1965). The transfer of learning. New York: Macmillan.
  2. Magill, R. A. (2010). Motor learning and control: Conceptions and applications. New York: McGrawHill.
  3. Perez, M. A., Tanaka, S., Wise, S. P., Sadato, N., Tanabe, H. C., Willingham, D. T., et al. (2007). Neural substrates of intermanual transfer of a newly acquired motor skill. Current Biology, 17, 1896–1902.
  4. Rose, D. J., & Christina, R. W. (2005). A multilevel approach to the study of motor control and learning (2nd ed.). Redwood City, CA: Benjamin-Cummings.
  5. Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th ed.). Champaign, IL: Human Kinetics.
  6. Schmidt, R. A., & Young, D. E. (1987). Transfer of movement control in motor learning. In S. M. Cormier & J. D. Hagman (Eds.), Transfer of learning (pp. 47–79). Orlando, FL: Academic Press.

See also: