What is Coordination?

Coordination is something we all take for granted— at least until it breaks down under extreme stress (as it does sometimes in competition) or following an  insult  or  disease  to  the  brain,  or  even  when body  parts  are  injured  or  replaced.  So  to  understand  coordination  scientifically,  we  must  somehow  make  the  familiar  strange—akin  perhaps  to the  proverbial  falling  apple  that  led  to  Newton’s great  insights  about  gravity.  Coordination  is  not just  physics,  even  though  we  may  apply  physical methods to try to understand it. Nor is it just psychology,  even  though  methods  of  cognitive science  such  as  reaction  time  are  used  to  assess how  coordination  is  planned  before  movements are even initiated. To understand coordination is a very deep problem, maybe as deep as understanding  life  itself.  The  reason  is  that  coordination  is not  just  any  kind  of  order  in  space  and  time.  It concerns  how  very  many  component  parts  and processes on many different levels of organization relate in an orderly fashion to produce a recognizable function or accomplish some particular task. Coordination may thus be defined as a functional ordering  among  interacting  components  in  space and  time.  Coming  in  many  guises,  coordination represents one of the most striking features of living organisms. It’s everywhere we look—whether in  the  regulatory  interactions  among  genes  that affect  how  cells  become  organs;  the  tumbling of  a  bacterium;  the  coordinated  responses  of organisms  to  constantly  varying  environmental stimuli;  the  coordination  among  nerve  cells  and muscles that produce basic forms of locomotion; the  coordination  among  cell  assemblies  of  the brain  that  underlies  our  ability  to  think,  decide, remember,  and  act;  the  miraculous  coordination between  the  lungs,  larynx,  lips,  and  tongue  that belies  a  child’s  first  word;  the  learned  coordination  among  fingers  and  brain  that  allows  the skilled pianist to play a concerto; the coordination of motion and emotion when making a key play in sport settings when the game is on the line; or the coordination between people like rowers in a racing  eight  and  players  in  a  rugby  team,  working  together  to  achieve  a  common  goal.  From the  micro  to  the  macro,  from  genes  and  cells  to brains,  people,  and  society,  everything  involves coordination.

Basic Principles of Coordination

Although  the  details  of  coordination  are  bound to  be  different  at  different  levels  of  biological organization,  for  different  organisms  and  for  different  functions,  might  there  also  be  some  basic principles of coordination that transcend these differences?  The  behavioral  physiologist  Erich  von Holst  certainly  thought  this  was  so.  In  his  essay “On the Nature of Order in the Central Nervous System”  (1937),  von  Holst  surveyed  the  wide occurrence of three basic kinds of coordination in the neural and rhythmic activities of animals, from respiration to voluntary movements, from worms to  human  beings.  One  he  called  absolute  coordination,  a  long-recognized  form  in  which  component  parts  operate  with  the  same  frequency  and with  specific  reciprocal  phase  relationships,  just like  a  marching  band  or  people  clapping  after  a performance.  Another,  extremely  rare,  form  that von  Holst  didn’t  give  a  name  to  concerned  the complete  lack  of  interaction  between  component parts as in the locomotion of centipedes and millipedes in whom a certain number of (middle) legs had been amputated (no reference to the game of cricket  intended!).  Persistent  practice,  von  Holst thought, as in playing the piano or the violin, could also lead to complete independence among the fingers  of  the  two  hands.  The  third,  possibly  most important  basic  form,  von  Holst  termed  relative coordination. Here the activities of the individual component  parts  are  neither  completely  independent  of  each  other  nor  linked  in  a  fixed  mutual relationship. For example, the fins of a fish may not always oscillate at the same frequency and can flexibly slip in and out of preferred phase relationships as  internal  and  surrounding  conditions  change. Relative  coordination  provides  a  glimpse  of  the tensions between two opposing tendencies that are present in all forms of complex coordination, the tendency of the components to keep separate (segregation)  and  the  tendency  to  cooperate  together (integration). Back in the days when chain reflexes were  thought  to  govern  coordinated  behavior, the  phenomenon  of  relative  coordination  hinted at  the  importance  of  intrinsic  pattern-generating processes in the central nervous system. Since these early days, great strides have been made in identifying  the  cellular  mechanisms  involved  in  neuronal circuits underlying the generation of rhythmic patterns  of  coordination.  Moreover,  in  the  last 30  years  or  so,  a  theoretical  framework  called coordination  dynamics  has  emerged  to  explain all  of  von  Holst’s  basic  coordination  types,  mixtures among them, and more generally how coordination  emerges,  adapts,  persists  and  changes  in complex  biological  systems.  Principles  of  coordination dynamics have been shown to govern patterns of coordination (a) within a moving limb and between moving limbs; (b) between the articulators during speech production; (c) between limb movements  and  tactile,  visual,  and  auditory  stimuli; (d)  between  people  interacting  with  each  other spontaneously   or   intentionally;   (e)   between humans  and  avatars;  (f)  between  humans  and other species, as in riding a horse; and (g) within and between the neural substrates that underlie the coordinated behavior of human beings as observed using modern brain imaging methods.

Key Concepts

Some  of  the  key  concepts  that  are  allowing  a deeper  understanding  of  coordination  are  self-organization,   collective   variables,   degeneracy, synergy,  informational  coupling,  and  intrinsic dynamics. Self-organization refers to the fact that patterns  of  coordinated  behavior  can  arise  solely as  a  result  of  the  dynamics  of  the  system,  with no  homunculus-like  agent  inside  telling  the  parts what to do and when to do it. The self in the word comes  from  the  fact  that  the  system  organizes itself.  What  is  important  is  setting  up  the  conditions  for  such  self-organized  pattern  formation to occur. The latter is defined, not in terms of the many individual parts or degrees of freedom, but rather in terms of collective variables that arise as a result of the many interactions that are going on. Collective  variables  are  low  dimensional,  hence simpler  descriptions  of  a  complex  system.  They are  meaningful  quantities  for  the  system’s  proper functioning.  Collective  variables  are  important to  identify  because  they  span  different  domains, such  as  sensory  and  motor,  brain  and  body,  perception  and  action,  which  are  usually  defined  as separate.  Collective  variables  thus  refer  to  the coupling  between  different  things  and  processes. Degeneracy  is  an  important  concept  in  biology and  means  that  at  every  conceivable  level  of description, the same outcome or function can be achieved in many ways using different components and different combinations among them. Thus, for example, in coordinated movements such as reaching for a cup, many different neural pathways and muscular  configurations  can  combine  to  achieve the same goal. The mechanism that nature seems to  use  to  handle  degeneracy  is  that  it  synergizes. Synergies  are  context-sensitive  functional  groupings of elements that are temporarily assembled to act  as  a  single  coherent  unit.  Depending  on  context, synergies may accomplish different coordinative functions using some of the same components (e.g., the jaw, tongue and teeth to speak and chew) and the same function using different components (e.g. “hand” writing with a pen attached to the big toe). The hallmark of a synergy is that during the course of ordinary function a perturbation to any part  of  the  synergy  is  immediately  compensated for  by  remotely  linked  parts  in  such  a  way  as  to accomplish a task or preserve functional integrity. Synergies are important because they are the functional units of coordination at all levels of biological  organization.  A  nice  example  is  the  so-called coxless pair in rowing where each oarsman has a single opposing oar. The boat can only go straight across the river if each rower pulls his own weight. If  one  slacks  off,  the  boat  will  go  in  circles  and the joint goal of the pair will not be accomplished. This  kind  of  cooperative,  mutually  beneficial interdependency among the interacting parts of a coupled system to achieve a common objective is ubiquitous in nature. It is a signature of functional synergy.  Relatedly,  the  coordination  between  different things (e.g., parts of the body, regions of the brain) and between different kinds of things (e.g., the  organism  and  the  environment,  two  people, and  so  forth)  depends  on  information  exchange, usually bidirectional in nature (“I talk to you; you talk to me.”). Interacting components and features can  thus  be  coupled  by  material  forces,  by  light, by sound, by touch, by smell, and by intention to accomplish  an  objective.  Such  meaningful  information transcends the medium through which the parts  communicate;  it  is  context  specific  to  the particular  form  that  coordination  takes  in  different task settings. In the coordinated systems of life and movement, the component parts and processes are seldom coupled purely mechanically; they are informationally  coupled.  Information  is  not  lying out  there  as  mere  data,  coded  in  some  symbolic  form; information is meaningful to the extent that it  modifies,  and  is  modified  by  the  intrinsic,  self-organizing dynamics.

Intrinsic Dynamics and Learning

This  brings  us  to  the  important  question  of  how new  patterns  of  coordination  are  learned.  Much evidence  now  indicates  that  this  depends  on  the predispositions  and  capabilities  of  the  individual  learner  before  learning  begins.  This  is  some Nevertheless,  such  predispositions  constitute  the  Nevertheless,  such  predispositions  constitute  the learner’s  behavioral  repertoire  at  a  given  point in  time:  the  learner’s  intrinsic  dynamics.  As  any inspiring  coach  or  teacher  knows,  the  great  benefit  of  identifying  the  learner’s  intrinsic  dynamics is that one knows what to modify. Any new information  (say  a  task  to  be  learned,  an  intention  to change behavior) has to be expressed in terms of the learner’s intrinsic dynamics, otherwise change is  not  possible.  Indeed,  the  mechanisms  through which coordination changes and the nature of the change  with  learning  itself  depend  crucially  on the  initial  individual  repertoire  before  new  learning begins. In this view of coordination, information is not really information unless it modifies the dynamics.

References:

  1. Fuchs, A., & Jirsa, V. K. (Eds.). (2008). Coordination: Neural, behavioral and social dynamics. Heidelberg, Germany: Springer.
  2. Kelso, J. A. S. (1995/1997). Dynamic patterns: The selforganization of brain and behavior. Cambridge: MIT Press.
  3. Kelso, J. A. S. (2009). Coordination dynamics. In R. A.
  4. Meyers (Ed.), Encyclopedia of complexity and system science (pp. 1537–1564). Heidelberg, Germany: Springer.
  5. Kelso, J. A. S. (2009). Synergies: Atoms of brain and behavior. Advances in Experimental Medicine and Biology, 629, 83–91.
  6. Kostrubiec, V., Zanone, P.-G., Fuchs, A., & Kelso, J. A. S. (2012). Beyond the blank slate: Routes to learning new coordination patterns depend on the intrinsic dynamics of the learner—experimental evidence and theoretical model. Frontiers in Human Neuroscience, 6, 212. doi:10.3389/fnhum.2012.00222
  7. Schöner, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239, 1513–1520.
  8. Sheets-Johnstone, M. (2011). The primacy of movement (2nd ed.). Amsterdam/Philadelphia: John Benjamins.

See also: