Сue Utilization Theory




Whether  out  of  envy  or  admiration,  people  have long  been  fascinated  by  the  extraordinary  skills of  champion  athletes  such  as  Roger  Federer  (tennis), Michael Phelps (swimming), and Lionel Messi (soccer).  Building  on  this  interest,  recent  years have  witnessed  increasing  collaboration  among researchers  from  cognitive  psychology,  sport  psychology,  and  cognitive  neuroscience  in  studying  the  mental  and  neural  processes  that  underlie expertise—or  the  growth  of  specialist  knowledge and  skills  as  a  result  of  effortful  experience—in sport.  Such  research  has  helped  scientists  understand  how  expert  athletes  manage  to  achieve  certain  remarkable  feats  in  the  face  of  severe  time constraints  and  rapidly  changing  environmental conditions. For example, how can top tennis players hit winning returns of balls that travel toward them so fast (up to 250 kilometers, or more than 150  miles  per  hour)  and  cannot  be  seen  clearly? This  paradox  is  intriguing  because  in  dynamic sports like tennis, the time taken for a ball to travel from  one  player  to  another  is  often  shorter  than the combined duration of an athlete’s reaction time and  movement  time.  Thus,  how  do  top  athletes respond effectively to fast-moving balls before they consciously perceive them?

The  answer  lies  in  anticipation.  Specifically, recent studies of rapid reactive sports like tennis, baseball,  and  cricket  show  that  expert  performers  can  circumvent  fundamental  information processing  constraints  by  using  clues  (advance cues)  from  their  opponents’  movement  patterns to  anticipate  the  direction,  trajectory,  and  likely landing  point  of  balls  speeding  toward  them. Such  cue  utilization  (or  the  ability  to  extract and  extrapolate  from  task-relevant  information provided  by  opponents’  behavior)  gives  athletes additional  time  to  devise  and  execute  appropriate  responses  to  fast-moving  balls.  Clearly, expert athletes in fast-ball sports appear to have a  cognitive  (anticipation-based)  rather  than  a physical  advantage  over  less  skilled  athletes. This  conclusion  raises  two  key  questions.  First, what  methods  do  psychology  researchers  use  to investigate  cue-utilization  processes  in  athletes? Second,  what  are  the  main  research  findings  in this field?

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% OFF with 24START discount code


Investigating Visual Cue Utilization Processes in Sport

Various  research  methods  have  been  used  to investigate  expert–novice  differences  in  the  perceptual–cognitive  skills  of  athletes.  These  methods  include  qualitative  procedures  (e.g.,  protocol analysis,  involving  recording  what  people  say  as they  think  aloud  while  solving  problems  in  their specialist  sport),  as  well  as  quantitative  strategies such  as  occlusion  tasks,  where  viewers  have  to make  sport-specific  predictions  based  on  limited information,  and  eye-tracking  technology,  which measures  the  location  and  duration  of  perceivers’  visual  fixations  elicited  while  viewing  slides or movie clips of sporting scenes. The latter methods, which have proved fruitful in studying visual cue-utilization processes in athletes, are explained briefly as follows.

Occlusion Tasks

Occlusion  tasks  require  people  to  make  predictions, such as judging the likely direction of a shot in tennis, from sport scenes in which vital information is either obscured or incomplete. By analyzing how expert athletes differ from novices in their performance on these predictive tasks, researchers can establish the relative importance of different perceptual  cues  to  likely  outcomes.  Normally,  occlusion tasks can be either temporal or spatial. In temporal occlusion  studies,  participants  have  to  guess  what happens next when viewing film sequences in which certain  important  temporal  information  (e.g.,  disguising the flight-path of a ball) has been deliberately occluded. In spatial occlusion studies, specific portions of the visual scene are progressively removed or occluded from view, and their effects on viewers’ accuracy  scores  are  analyzed.  The  assumption  of this latter approach is that if there is a performance decrement when a particular spatial area of a stimulus  display  like  the  hips  or  shoulders  of  a  tennis player model during a simulated serve is occluded from participants, then that area of interest seems likely to be especially informative to viewers.

Eye-Tracking Methods

Eye-trackers  (whether  fixed  or  mobile)  are designed  to  record  the  location,  duration,  number, and sequence of a perceivers’ visual fixations as  they  look  at  slides  or  video  film  simulations of  sport-relevant  information  in  laboratory  settings. Using such variables, eye-tracking researchers  draw  inferences  about  athletes’  visual  search behavior. For example, the location of a visual fixation is usually regarded as an index of the relative importance of a given cue within the display being viewed. Similarly, the number and duration of athletes’  fixations  in  a  particular  region  are  believed to  reflect  the  information-processing  demands  of the information displayed in that area.

Research Findings on Cue Utilization

A considerable volume of research on cue utilization  processes  in  athletes  has  been  conducted  by sport  psychology  investigators  using  occlusion and  eye-tracking  methods.  Three  important  findings  of  these  studies  may  be  summarized  as  follows.  First,  expert  athletes  are  generally  superior to novices in their ability to anticipate what their opponents  will  do  next  on  the  basis  of  advance visual  cues  extracted  from  their  adversaries’  postural  movements  and  from  the  relative  motion between  opponents’  bodily  features.  One  advantage of this superiority in anticipation skills is that it gives expert athletes additional time to counteract  the  perceived  intentions  of  their  adversaries. Second,  expert  athletes  appear  to  employ  more efficient visual search strategies than those of novices  when  inspecting  visual  displays  in  their  specialist  sports.  For  example,  elite  performers  tend to display fewer visual fixations than novices while viewing sport scenes, but these fixations are often of longer duration than those of their less skilled counterparts.  In  other  words,  experts  tend  to  be drawn more than novices to information rich areas of interest in sport-related displays. Finally, expert athletes tend to be superior to novices in sporting pattern-recognition—using  their  greater  knowledge of game-specific event probabilities to anticipate how a given scenario is likely to develop over time (see also the entry “Situational Awareness”).

Despite these advances in our understanding of cue  utilization  processes  in  athletes,  at  least  two unresolved  issues  remain.  First,  the  theoretical mechanisms  underlying  expert–novice  differences in  anticipation  skills  remain  largely  unknown.

Therefore, the attempt to explain how expert athletes  acquire,  develop,  and  update  their  anticipatory  advantages  over  less  proficient  counterparts is an urgent priority for future researchers in this field.  Second,  there  is  little  consensus  at  present  among  researchers  as  to  whether  or  not  it  is possible  to  effectively  train  perceptual–cognitive skills in athletes. As before, additional research is required to arbitrate empirically on this issue.

References:

  1. Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37, 931–948.
  2. Müller, S., Abernethy, B., Eid, M., McBean, R., & Rose, M. (2010). Expertise and the spatio-temporal characteristics of anticipatory information pick-up from complex movement patterns. Perception, 39, 745–760.
  3. Williams, A. M., & Ford, P. R. (2008). Expertise and expert performance in sport. International Review of Sport & Exercise Psychology, 1, 4–18.
  4. Williams, A. M., Ford, P. R., Eccles, D. W., & Ward, P. (2011). Perceptual-cognitive expertise in sport and its acquisition: Implications for applied cognitive psychology. Applied Cognitive Psychology, 25, 432–442.
  5. Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2010). Functional MRI reveals expertnovice differences during sport-related anticipation. NeuroReport, 21, 94–98.

See also: