Anticipation in Sport

In  sport  and  exercise  psychology,  anticipation usually  refers  to  the  ability  to  quickly  and  accurately predict the outcome of an opponent’s action before  that  action  is  completed.  Skilled  athletes can  use  bodily  cues  to  anticipate  outcomes  at earlier  moments  in  an  action  sequence  than  can unskilled  athletes,  allowing  them  more  time  to perform  an  appropriate  response  in  time-stressed tasks.   A   basic   understanding   of   anticipation requires  a  comprehension  of  how  skilled  athletes anticipate actions, how anticipation is best tested, and what the practical implications are for training anticipation.

How Skilled Athletes Anticipate Actions

Anticipation  is  most  commonly  tested  by  occluding vision at a critical point in an action sequence, after  which  the  observer  must  predict  the  action outcome. For instance, a tennis player may observe an opposing player performing a serve, but at the moment of racquetball contact, vision is occluded, and the receiver must predict the direction of the serve. Skilled athletes in a wide range of sports do better than lesser skilled performers in these tests, including  in  tennis,  soccer  goalkeeping,  squash, and  batting  in  baseball  and  cricket.  Occlusion  is achieved in the laboratory using edited video footage  or  in  the  field  by  using  liquid  crystal  glasses that quickly and selectively occlude vision.

Skilled   athletes   anticipate   action   outcomes based  on  events  presented  earlier  in  a  movement sequence, providing a distinct advantage for sports skill that must be performed under severe time constraints.  The  selective  occlusion  of  different  body segments (e.g., the arms or legs) in video displays has  shown  that  experts—when  compared  with novices—rely on the movement of body segments that  are  more  remote  from  the  end  effector.  For example, novice badminton players typically anticipate  based  on  the  movement  of  the  opponent’s racquet, whereas skilled players use the movement of  the  opponent’s  racquet  and  arm.  Attention toward  the  arm  provides  a  temporal  advantage, as  movement  of  the  arm  precedes  the  movement of the racquet. The expert advantage in anticipation is based on sensitivity to kinematic movement patterns, rather than to figural or contextual cues. Point-light  displays  replace  video  footage  of  an opponent  with  a  series  of  isolated  points  of  light located at critical joint centers; expert–novice differences  in  anticipation  are  replicated  when  athletes view these displays. Evidently, skilled athletes have developed the ability to understand the consequences  of  the  underlying  kinematic  movement pattern  of  their  opponents.  It  is  likely  that  this skill  has  developed  not  only  as  a  consequence  of observing these movements but also by skilled athletes performing the same actions. Perception may share a mutual form of neural programming with the production of action; recent work has shown that  anticipation  of  an  action  relies  on  the  same brain region that is used when generating the same action.

Testing Anticipation

Anticipation can be tested using a range of different display stimuli and responses. While it is most favorable to use conditions that accurately reflect those found in the natural environment, the need for  consistency  and  control  in  testing  conditions means that this is not always possible. Skilled athletes outperform lesser skilled players in simulated conditions; however, the degree of superiority will be an underrepresentation of the true ability that would be found in the natural environment.

Display Stimuli

Video  simulations  allow  anticipation  to  be tested  in  a  very  reliable  and  repeatable  manner,  though  they  often  lack  the  size,  contrast,  or depth  information  available  in  real  life.  Liquid crystal occlusion goggles allow anticipation to be tested  in  the  performance  setting;  this  improvement  in  display  fidelity  usually  leads  to  a  commensurate increase in the size of the expert–novice difference.

Perception-Action Coupling Training Anticipatory Skill

Perceptual   training   programs   are   used   to improve  the  anticipatory  skill  of  developing  athletes.  These  programs  expose  learners  to  a  high volume  of  action  sequences  (usually  occluded), observed either using video displays or in the field setting  and  often  accompanied  by  some  form  of guiding information to accelerate skill acquisition. Perceptual training generally leads to an improvement in anticipatory skill, though there is conjecture  about  the  most  effective  forms  of  training. Intuitively,  practitioners  have  sought  to  provide learners with explicit information about how they should  search  for  and  interpret  kinematic  cues. More recent work suggests that implicit means of training, which guide attention without the provision of explicit rules, may enhance the likelihood that  a  skill  is  retained  and  may  render  the  skill more robust under stress.

Athletes  make  perceptual  predictions  in  most tests  of  anticipation  (e.g.,  verbal  or  pen-and-paper);  however,  the  separation  of  perception from  action  may  miss  an  important  element  of sporting  expertise.  It  is  likely  that  perceptual responses   test   only   the   vision-for-perception neurological  pathway;  in  contrast,  skilled  athletes  rely  on  a  specific  vision-for-action  pathway   to   produce   real-time   movements   in   the natural  setting.  Accordingly,  it  has  been  found that  movement-based  responses  provide  a  better assessment of skilled anticipation than purely perceptual responses do.

Practical Implications

Facilitation of Performance

Skilled athletes use prerelease information to facilitate early and appropriate body positioning, rather  than to stipulate the exact location the ball or target will arrive. This allows for better use of postrelease information to engender successful interception. The kinematic movement pattern of the opponent is also used to coordinate the timing and movement of an athlete’s  response.  The  importance  of  anticipatory skill  suggests  the  need  for  advance  information  to be present in the training environment to optimize learning; for example, this principle has been used to argue against the use of ball projection machines, as they  remove  the  kinematic  movement  information essential for anticipation.

References:

  1. Abernethy, B., & Russell, D. G. (1987). Expert-novice differences in an applied selective attention task. Journal of Sport Psychology, 9, 326–345.
  2. van der Kamp, J., Rivas, F., van Doorn, H., & Savelsbergh, G. J. P. (2008). Ventral and dorsal contributions in visual anticipation in fast ball sports. International Journal of Sport Psychology, 39(2), 100–130.
  3. Williams, A. M., Ward, P., Knowles, J. M., & Smeeton, N. J. (2002). Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. Journal of Experimental Psychology: Applied, 8, 259–270.

See also: