Cognitive Capabilities

In the domain of sport, the term cognitive capabilities refers to the athlete’s aptitude to process, evaluate,  select,  and  compare  information.  Cognitive capabilities are encompassed in the cognitive system and serve as a linkage between the perceptual and motor systems. Thus, these assume the role of interpreters, translating environmental stimuli into meaningful  patterns  for  further  processing.  The main  function  of  these  analytical  mental  skills  is problems solving and decision making. The list of cognitive capacities is broad and includes, but not limited to memory, perception, attention, anticipation, and situational assessment.

An  example  from  tennis  is  provided  here  to demonstrate  and  clarify  the  importance  of  cognitive  capabilities  in  the  sport  domain:  A  player returning  a  tennis  serve  is  required  to  process environmental information, which stems from the player serving the ball (the height and positioning of  the  ball,  hip  angle,  arm  and  racquet  motion, etc.) and other potentially salient sources of information (prevailing wind direction, the court characteristics, the match score, etc.). The capacity to efficiently analyze this information and anticipate the final location, speed, and spin of the ball, and generate  plausible  return  options)  for  instance,  is indicative of the returner’s cognitive capabilities.

Measuring and Capturing Cognitive Capabilities

The exploration of cognitive components evolved from  cognitive  psychology  and  the  information processing approach, in which the computer processor was used as a metaphor for the black box (the human processor). Thus, similarly to computers,  cognitive  capabilities  were  traditionally  measured by speed (e.g., reaction time), quantity (e.g., size of knowledge base), and quality (e.g., decision optimization)  information.  These  three  cognitive characteristics  systematically  distinguish  among athletes of different skill levels, even more so than physical and technical skills. Although sport activity is primarily defined as a motor task, the cognitive components appear to be the decisive factor in the attainment of expertise.

As a result of the limitations in observing cognitive capabilities, a combination of creative research designs and state of the art technology are required to  study  these  processes.  Initially,  researchers focused on measuring basic memory functions by utilizing  pattern  recognition  and  recall  tasks  (see also the entry “Pattern Recognition and Recall”). These  set  of  studies  attempted  to  capture  athletes’  ability  to  recognize  and  recall  static  and dynamic  game  patterns  and  structures.  Although experienced,  skilled  athletes  exhibited  superior performance over novices on these tasks, ensuing studies  provided  evidence  that  these  capabilities are relatively easy to train and do not afford information  to  the  underlying  mechanisms  leading  to the acquisition of advanced cognitive capabilities. Thus,  research  paradigms  and  designs  shifted  to the examination of more domain-relevant and representative tasks, which have been used in the past 30 years.

An  innovative  assessment  tool,  the  temporal and spatial occlusion paradigm, explores athletes’ anticipatory capability in representative situations (see also the entry “Anticipation”). The paradigm consists  of  a  domain-specific,  sport  action  video sequence,  presented  to  athletes  of  different  skill levels.  In  the  spatial  occlusion  paradigm,  different  areas  of  the  display  are  blocked  for  part  or the  duration  of  the  entire  action  sequence.  While using  temporal  occlusion,  the  action  sequence  is occluded  at  a  certain  point  in  time  and  usually remains  occluded  until  the  end  of  the  sequence. Participants  are  then  required  to  predict  the  following  events  of  the  sequence,  based  on  the  limited information they received. Thus, by observing differences  in  performances  among  spatial  areas and  temporal  points,  insight  is  given  to  the  key environmental stimuli needed for successful anticipation.  Additionally,  under  this  paradigm,  skilled athletes  are  able  to  predict  opponents’  intentions early  and  accurately  by  utilizing  cues  more  efficiently (see also the entry “Cue Utilization”).

To  assess  visual  search  behaviors  that  lead  to anticipation  and  enhance  decision  making,  eye-tracking  technologies  are  used.  The  introduction of  this  equipment  enables  researchers  to  measure variables,  such  as  fixation  areas,  fixation  duration,  frequency,  and  search  order  or  sequence.

Comparison  between  successful  and  unsuccessful performances allows researchers to identify effective search strategies and gaze behaviors. Although this  technology  provides  detailed  and  imperative information,  there  are  several  limitations  that should be considered: the calibration of the instruments,  inference  from  gaze  behaviors,  size  and mobility of the equipment, and connection issues.

Finally,  with  the  use  of  retrospective  and  concurrent  verbal  reports,  researchers  are  able  to explore  the  intact  thought  process  from  stimuli detection  to  action  generation.  In  this  process tracing research method, athletes provide detailed reports  of  their  thoughts  during  or  after  performance. This procedure enables gaining insight and access to cognitive processes.

All of the above-mentioned capturing and measuring  paradigms  make  use  of  the  expert–novice paradigm in which performance comparisons were used  to  infer  on  the  cognitive  capabilities  necessary for achieving successful performance. Extant research  using  these  paradigms  resulted  in  abundant and valuable knowledge related to skill level differences in cognitive capabilities.

Expert–Novice Differences

Expert athletes are able quickly and accurately to anticipate future events. They are capable of assessing  a  situation  efficiently  by  integrating  in-vivo information  from  the  environment  with  stored information  like  knowledge  base  and  long-term memory,  utilizing  an  advanced  memory  structure termed  long-term  working  memory.  Specifically, long-term working memory facilitates the acquisition of mental representations and planning. Thus, by relying on advanced cognitive capabilities, elite athletes  display  superior  decision-making  skills. These  decisions  are  characterized  by  flexibility, creativity, and adjustment to dynamic situations.

Cognitive capabilities are often divided into different sequential processes. Visual search behavior is  the  initial  process  and  refers  to  where  athletes gaze and what they attend to. The two prevailing strategies  are  context  (attending  to  a  large  visual field)  and  target  (attending  to  a  narrow  visual field)  control.  Novice  athletes  cannot  utilize  context  control  strategies  because  of  limitations  in the  amount  of  information  they  can  process.  On the other hand, experts have the flexibility to shift from  context  to  target-control  strategies  depending on environmental demands.

Furthermore,  experts  exhibit  advanced  cue utilization skills. This allows them to incorporate complex  and  expansive  cues  in  the  anticipation process,  and  predict  what  will  occur  next  with higher  probability  and  confidence.  Skill  level differences are also evident in the option generation and prioritization process. Primarily, experts generate  more  relevant  options  and  efficiently prioritize  them.  This  cognitive  advantage  is  subsequently reflected in the action selection process, where  the  expert  athlete  is  able  to  determine  the action  that  will  result  in  the  best  possible  outcome.  More  importantly,  experts  have  the  capability to alter a previously selected action pattern on the fly. Finally, elite performers evaluate their performance  with  better  precision,  compared  to low-level performers, and hence can detect errors in  their  performance  (process  and  outcome)  and adjust  their  actions  accordingly  in  the  upcoming situations.

References:

  1. Mann, D., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: A meta-analysis. Journal of Sport & Exercise Psychology, 29, 457–478.
  2. Tenenbaum, G. (2003). An integrated approach to decision making. In J. L. Starkes & K. A. Ericsson (Eds.), Expert performance in sport: Advances in research on sport expertise (pp. 191–218). Champaign, IL: Human Kinetics.

See also: