Recognition and Recall Paradigms

Pattern  recognition  and  recall  paradigms  are  the concepts,  theories,  and  methods  that  are  typically  used  to  examine  and  explain  the  underlying  mechanisms  contributing  to  the  capability  of performers to recognize and/or recall information from their domain. A vast amount of evidence has demonstrated  that  experienced  performers  are better  than  novices  at  recalling  the  locations  of “elements” (i.e., the individual items that comprise a pattern) from a pattern that is presented for only a relatively brief period of time. Similarly, experienced  performers  can  also  recognize  a  previously seen  pattern  from  among  previously  unseen  patterns  with  accuracy  that  surpasses  lesser-skilled individuals.  The  theoretical  explanations  surrounding these attributes are important for helping better  understand  the  methods  in  which  experts (including  expert  sportspeople)  from  a  range  of domains utilize perceptual information as well as assisting in the design and implementation of practical  applications  for  enhancing  the  perceptual– cognitive  skills  of  lesser-skilled  individuals.  This entry  provides  information  on  the  basic  theoretical  principles  used  to  explain  experts’  superiority in  pattern  recognition  and  recall  tasks.  Much  of this theorizing has arisen from outside the classical sport domain in other domains such as chess.

The results from research conducted by Adriaan de Groot in the mid-1900s on chess experts are frequently cited as some of the more influential findings in the area. He showed that experienced chess players  could  recall  the  locations  of  chess  pieces from  only  brief  viewings  of  chess  boards  with extraordinary accuracy compared to that achieved by lower-level players. While this proved to be an interesting  finding  in  itself,  subsequent  work  by William Chase and Herbert Simon in 1973 showed that the superiority of the experienced players was apparent  only  when  the  pieces  were  arranged  in configurations  that  were  typical  of  actual  game play. They showed that when the pieces were placed in more random configurations that were less typical  of  a  normal  game,  the  recall  performance  of the  highly  skilled  players  deteriorated  to  a  point where  it  was  largely  indistinguishable  from  that of  the  lower-level  players.  The  latter  finding  was of  primary  importance  because  it  suggested  that        skilled recall performance is not necessarily based upon a generalized memory advantage. Chase and Simon suggested that the experienced players had acquired  the  capability  to  link  particular  chess piece locations together so they could be encoded into short-term memory (STM) as small clusters of information.  This  method  of  encoding  essentially lightened  the  load  on  STM  by  reducing  the  large number  of  individual  chess  pieces  that  had  to  be memorized into a smaller subset of pieces. (See the entry “Chunking/Dechunking,” this volume.)

Since the development of this theoretical framework, further research has shown that experts can continue  to  recall  large  amounts  of  information under conditions where STM capacity is likely to be overwhelmed. This prompted a paradigm shift with  contemporary  memory-based  theories  such as  Fernand  Gobet  and  Herbert  Simon’s  template theory in 1996 and the long-term working memory theory of K. Anders Ericsson and Walter Kintsch in  1995,  emphasizing  a  more  prominent  role  for long-term memory (LTM). The exact nature of the underlying  mechanisms  that  are  proposed  varies across the two theories, but the general consensus suggests  that  after  extensive  experience  in  their domain,  experts  acquire  unique  and  task-specific structures in LTM that allow patterns to be rapidly stored and retrieved without exceeding the capacity of STM. In short, information can be directly encoded  into  LTM  with  links  and  associations created  between  similar  sources  of  information. Consequently,  when  a  domain-specific  pattern  is observed  (e.g.,  a  defensive  setup  in  basketball), the  configurations  of  elements  within  the  pattern (i.e.,  player  locations)  generate  cues  that  rapidly associate the observed pattern with other patterns in  LTM  (e.g.,  recognizing  the  pattern  as  a  zone defense), allowing the necessary information to be quickly stored and then accessed as required.

An alternative theoretical approach, termed the constraint  attunement  hypothesis,  was  developed by  Kim  Vicente  and  JoAnne  Wang  in  1998.  This approach  downplayed  the  role  of  memory  as  the primary mediator of expert performance in recognition and recall tasks and instead highlighted the importance  of  the  environment.  They  proposed that  skilled  performers  do  not  necessarily  rely upon pattern representations stored in memory but rather  experts  learn  to  closely  attend  to  the  naturally  occurring  relationships  that  exist  within  thetypical  performance  environment.  After  extensive exposure to the critical environmental features (e.g., rules and tactics) that influence the movements of elements in a typical pattern, experts learn to accurately identify the pattern structures that are common to their domain. However, when the patterns are  less  structured  and  more  randomly  arranged, the relationships between the pattern elements are altered. As a consequence, the pattern information becomes  less  familiar  and  so  the  capability  of  the experts  to  accurately  recognize  and/or  recall  the patterns under such circumstances is also reduced.

Historically, the majority of the extant research investigating  pattern  recognition  and  recall  has primarily focused upon memory-based paradigms although the precise mechanisms underlying these and  other  theoretical  frameworks,  such  as  the constraint  attunement  hypothesis,  are  a  source of  continued  debate.  Despite  this,  a  common theme across all theories is that skilled performers develop the unique capability to extract information from sport-specific patterns and play configurations,  allowing  them  to  accurately  and  rapidly recognize  and/or  recall  these  patterns  when  the situation demands.


  1. Charness, N. (1976). Memory for chess positions: Resistance to interference. Journal of Experimental Psychology: Human Learning and Memory, 2, 641–653.
  2. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81. de Groot, A. D. (1965). Thought and choice in chess. The Hague, Netherlands: Mouton.
  3. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.
  4. Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31, 1–40.
  5. Vicente, K. J., & Wang, J. H. (1998). An ecological theory of expertise effects in memory recall. Psychological Review, 105, 33–57.

See also: