Sex Differences and Sport

Sex  differences  are  often  referred  to  interchangeably  as  gender  differences,  often  to  offset  taboos associated with the word sex. Use of the word gender originated as a social construct to include biological sex, social roles, and gender identity and is conventionally used in biological delineations. The significance  of  physical  differences  between  and within sexes lies in perceptions formed from social comparisons  and  stereotypes  generated  and  perpetuated within the sociocultural environment by significant  others,  parents,  coaches,  peers  (social agents),  and  the  popular  media.  Differences  in biological  or  in  physical  and  physiological  characteristics are referred to as sex differences in the literature.  However,  when  perceptions  of  the  self or  those  of  social  agents  are  involved,  the  term gender  differences  is  more  common.  Because  discussions  of  sport  and  exercise  participation  and performance   inherently   involve   interactions among  physical,  psychological,  task  and  environmental factors, the term gender differences is most appropriate unless the discussion focuses solely on biological characteristics. Regardless of semantics, an understanding of male and female differences in sport and exercise psychology (SEP) is necessary to inform  research  designs,  talent  development,  and practical interventions.

Conceptual   models   from   general   psychology  and  motor  behavior  help  categorize  gender differences  and  promote  the  notion  that  athletic and  exercise  performance  quality  are  functions of  interacting  individual  and  environmental  variables.  Motor  behavior  models,  however,  also account for task characteristics. More specifically, dynamical  systems  and  biocultural  perspectives applied  to  motor  behavior  postulate  that  athletic performance  outcomes  (positive  or  negative)  are functions of interacting individual, environmental, and task characteristics. Individual characteristics can be structural (i.e., physical) or functional (i.e., psychological)  and  these,  too,  interact  affecting outcomes  positively  or  negatively.  For  example, if  an  athlete’s  structural  (e.g.,  leanness  and  linearity)  and  functional  (e.g.,  mental  toughness, fearlessness)  characteristics  match  the  demands of the task (e.g., motor performance skills involving  aerial  rotation)  and  the  athlete  has  access  to a  comprehensive  coaching  team  (e.g.,  elite  level, certified  coaches,  mental  training  advocates),  the likelihood of success is enhanced. Alternatively, an example illustrating a possible negative impact of interacting  structural  and  functional  characteristics  would  be  a  late  maturing  athlete  who  is  not strong enough to enjoy the successful accomplishments  of  early-maturing,  stronger,  and  seemingly more  skilled  peers  within  his  or  her  same  gender group. Consequently, low self-esteem during critical growth periods, which can span five years, may be evident among late maturers and impact behavioral choices. Unfortunately, interdisciplinary studies  of  development  that  measure  biological  and psychological  variables  concurrently  are  sparse. The following sections consider gender differences within  individual,  environmental,  and  task  components to help elucidate other interactions informative  to  practitioners  working  in  athletic  and exercise contexts.

Physical Domain

Sex  differences  refer  to  the  biological  characteristics linked to chromosomes where females (x,x) and  males  (x,y)  vary  in  reproductive  characteristics  and  functions  as  well  as  other  physical  characteristics  that  underlie  performance  differences. Differences  in  physical  size  are  minimal  until about 9 years of age when females enter their preadolescent  growth  spurt  (age  at  takeoff);  males follow  about  2  years  later  at  11.  Peak  height velocity  (PHV,  the  largest  amount  of  growth  in height  within  a  1-year  period)  occurs  about  18 to  24  months  earlier  in  females  (=  10.7  years, early, to 13.5 years, late) than in males (M = 12.5 years,  early  to  15.7  years,  late).  Growth  during the  year  of  PHV  varies  from  5.4  cm  to  11.2  cm for females and 5.8 cm to 13.1 cm for males. On average, females will grow 1 cm per year. less than males, averaging about 9 cm per year compared to males at 10.3 cm per year. Pubertal growth spurts last 24 to 36 months, and the growth during this time accounts for about 20% of final adult height where  females  grow  between  23  and  28  cm  and males  26  to  28  cm.  Peak  weight  velocity  (PWV) coincides  with  PHV  in  males  but  in  females, PWV  occurs  6  to  9  months  after  PHV.  Males and  females  also  differ  in  somatotype,  a  three component  physique  indicator  characterizing  the shape of the body as relatively pear-shaped (endomorphy),  muscular  and  V-shaped  (mesomorphy), or  lean  and  linear  (ectomorphic).  Boys  are  more ectomorphic  than  girls  early  (<12  years)  and  late (17  years)  in  adolescence.  Differences  in  mesomorphy  are  minimal  in  early  adolescence  but are  marked,  favoring  boys  in  later  adolescence, whereas girls have higher endomorphy scores than boys at both points in development.

While overall fatness differs between boys and girls,   between  and   within-gender   differences can  vary  significantly  because  of  factors  such  as nutritional intake, which is further linked to socioeconomic  status  (SES).  After  puberty,  the  ratio of  muscle  to  fat  among  boys  doubles.  Boys  also have  more  lean  body  mass  and  greater  arm  and calf circumference than girls. Because of metabolic differences  corresponding  with  tissue  differences, the  average  daily  energy  requirements  are  higher for  boys  than  girls,  and  this  is  consistent  at  each chronological  age  particularly  postpuberty.  The magnitude  of  difference  is  much  greater  at  late adolescence  (male  =  2,870  kcal;  female  =  2,140 kcal)  than  in  early  childhood  (ages  3  to  7;  1,440 vs.  1,560,  respectively)  with  the  gap  widening between 14 and 16 years of age.

Human  development  is  age  related,  not  age specific; biological age represents changes in body structure,  function,  and  tolerance  to  environmental  stress  and  does  not  equal  chronological (calendar)  age.  Thus,  the  timing  of  growth  and maturation  within  the  context  of  social  norms may underlie many self-perception variations and behavioral  choices  within  and  between  sexes. At  adulthood,  within-sex  variability  in  physical characteristics  (i.e.,  leg  length,  height,  fat  mass, physique)  are  markers  of  developmental  timing pathways traveled by boys and girls because these characteristics vary systematically with the timing of  PHV  and  sexual  maturation.  Early  maturers tend  to  be  shorter  and  stockier  (mesomorphic  in physique)  than  late  maturers  who  are  typically more  linear  (ectomorphic  in  physique)  with  longer  legs.  Longer  relative  leg  length  is  attributed to  the  growth  plates  of  the  long  bones  (i.e.,  legs) remaining  open  for  a  longer  period,  resulting  in taller stature. Accordingly, boys who mature later than girls are typically taller with longer legs than torso  (i.e.,  sitting  height–stature  ratio)  and  this phenomenon is also true within each gender; later maturers are typically leaner with longer legs than early maturers.

Sexual development varies significantly between males and females and is hardly comparable with the  exception  of  pubic  hair  transition,  which  is about 9 months later in boys than girls (male M =11.8 years old, female M = 10.2 years old). Genital development among boys begins around 9.5 years of age where as breast development in girls begins around  10  years.  Additionally,  girls  experience menarche  (initial  menses)  at  about  11.8  1.0 years, approximately 1 year after age at PHV. The timing  of  menarche,  typically  assessed  through retrospective  interviews,  can  be  an  informative biological  characteristic  especially  in  reference  to tracking  development  in  areas  such  as  psychological and behavioral characteristics, injuries, and motor performance. To date, accounting for physical or biological characteristics reflecting maturational  timing  is  an  exception  rather  than  a  norm in psychology research designs. Consequently, the complex  mechanisms  underlying  gender  differences in psychological phenomenon such as those comprising the functional domain are limited.

Functional Domain

Functional,   or   psychological,   gender   differences  span  a  variety  of  domains  including  cognitive  abilities,  personality,  self-perceptions,  social behavior,  and  memory.  While  not  all  are  directly relevant  to  athletic  and  exercise  contexts,  some of  these  characteristics  may  be  embedded  within athletic  domain  specific-self  perceptions.  For  the most  part,  studies  show  that  sport  participation has  positive  influences  on  psychological  characteristics  such  as  self-confidence,  self-concept,  and self-worth  in  both  males  and  females  but  results of  other  studies  suggest  this  finding  is  equivocal among  females.  Some  studies  show  that  women particularly  with  athletic  bodies  report  conflict between  their  physique  perceptions  and  cultural ideals  of  leanness  and  linearity.  The  female  athlete triad, linking body dissatisfaction, disordered eating,  and  osteoporosis,  is  an  example  of  how negative  self-perceptions  often  stemming  from sport-context  pressures  to  lose  weight  can  negatively  influence  behavior  and  deteriorate  health.

Body  image  dissatisfaction  is  also  evident  among male athletes who in contrast ideally desire to be bigger, or more muscular.

In  general  psychology,  studies  show  that  gender  differences  in  functional  characteristics  are often contingent on developmental stage. Among adolescents,  there  is  evidence  that  males  are better  than  females  in  the  following  cognitive variables:  mechanical  reasoning,  spatial  perception,  and  mental  rotation.  For  communication variables  of  facial  expression  processing  and emotional  expression  (smiling),  females  outperform males in both adolescent and adult samples. Males  consistently  outscore  females  in  a  variety of  aggression,  competitiveness,  computer  efficacy,  sexual  behavior,  and  confidence  measures. Developmental  trends  based  on  chronological age stratification show males outperform females in  complex  problem  solving  but  only  after  the age  of  15,  and  this  is  often  confounded  by  some of  the  aforementioned  differences  in  aptitude. Additionally,  boys  report  higher  self-esteem  than girls  but  only  between  11  and  18  years  of  age, with small effect sizes (ES <.35).

Noting  age  periods  where  there  are  similarities  between  boys  and  girls  are  just  as  important for  informing  practice,  particularly  if  scores  are low or imply negative behaviors and perceptions. Interestingly, gender difference claims are exceedingly  overinflated  in  this  domain.  Historically, highlighting male and female differences has dominated  popular  media,  but  meta-analytic  reviews do not support many of the stereotypes (ES >.36). Examples  include  superior  mathematical  performance  and  self-esteem  among  men  and  superior nurturing by women.

Understanding  gender  differences,  and  lack thereof, is not only important for helping athletes and exercisers but also for understanding perceptions  and  influences  of  significant  others  such  as coaches,  parents,  and  athletic  trainers  in  respective  social  networks.  Stereotype  threat  studies show expectations of gender differences can influence  performance;  in  conditions  where  females expected  gender  differences  in  performance,  they underperformed men. Continued expectations for, and  communications  about,  gender  differences perpetuated in athletic and exercise environments can  undermine  confidence,  motivation,  and  perhaps  even  healthy  eating  and  exercise  behaviors. Consider  the  early-maturing  female  who  may engage in dietary restrictions and excessive exercise in  efforts  to  control  physique  characteristics  that are genetically linked and not malleable.

Task Characteristics

The  overwhelming  influence  of  social  environment  factors  (practice  frequency,  instruction,  and feedback  quality)  on  performance  is  highlighted by data showing gender differences favoring boys in  throwing  velocity  and  distance  prior  to  age  at PHV  takeoff  where  size  and  strength  differences between sexes are minimal; throwing for distance ES  are  from  1.5  to  2.0  for  children  3  to  8  years old,  and  not  surprisingly,  the  difference  is  stable, increasing to > 3.5 after for adolescents 16 to 18 years old. However, for other variables, gender differences are generally not stable; there is no difference until after puberty for balance, pursuit rotor tracking, tapping and vertical jump. Gender differences  favoring  boys  are  evident  prior  to  puberty for short distance running, sit-ups, long jump, grip strength,  shuttle  run,  and  catching.  There  are  no age-related  trends  in  gender  difference  that  favor boys  for  agility,  anticipation  timing,  arm  hang, reaction  time  (RT)  (low  ES),  throwing  accuracy, and wall volley (high ES); a low difference favoring girls is evident for eye motor coordination and flexibility tasks. In childhood, studies have shown that girls also develop certain fundamental motor skills  earlier  than  boys  including  skipping,  hopping, and catching by 6 months to 1 year.

Environmental Characteristics

Influences  from  parents,  teachers,  and  coaches among other in the form of gender role stereotypes and  biologically  based  expectations  shape  self-perceptions  and  consequently  performance  capabilities.  Perception  and  performance  differences prior to elementary school are largely attributed to parents. Sons receive more sport opportunities and encouragement  and  engage  in  more  gross  motor behaviors and rough play than daughters. Teachers and coaches tend to treat differences as naturally evolving  biological  factors  formulating  expectations  conforming  to  stereotypes.  Consider  gender specific  norms  in  fitness  testing  which  rightfully account for biological differences yet may permeate  areas  where  differences  do  not  exist  and  are irrelevant.

The  magnitude  and  even  direction  of  gender differences  depend  on  the  context  and  perhaps to  a  larger  extent  than  is  currently  supported  by data, the interactions among individual, structural, and functional characteristics. With the exception of  physical  characteristics,  gender  differences  are few,  small,  and  unstable.  Although  socialization toward specific activities and development of competitive  orientations  begin  much  earlier  than  the growth spurt, biologically there are minimal physical differences between boys and girls prior to the growth spurt.

Attending  to  gender  similarities  and  within gender  variability  in  maturational  timing  and  its associated  physical  characteristics  is  particularly important  to  counteract  gender  stereotypes  and make  the  most  informed  decisions.  For  example, the  2 to  3-year  window  when  pubertal  girls  are generally taller and stronger than many boys can be  a  critical  period  for  girls’  confidence  development in athletic contexts. But this depends on how social  agents  shape  sport  experiences  relative  to cultural ideals that still favor the lean, linear feminine physique. In contrast, boys’ self-esteem is as equally  problematic  as  it  is  for  girls  particularly for boys who mature late during early adolescence. Consequently, parents, teachers, and other professionals  may  overlook  boys’  self-esteem  problems, precluding interventions that they need. The costs of  inflated  claims  of  gender  differences  are  also notable  and  may  undermine  many  areas  including parenting, relationships, and work, as well as opportunities in athletic and exercise settings. One historic example is the preclusion of women from marathon running until 1984.

While  Title  IX  of  the  Education  Amendments of  1972  helped  improve  participation  opportunities  for  women  in  the  United  States,  gender  stereotypes still exist and undermine the importance of  being  informed  about  sex  and  gender  differences. Decisions about athletic participation, specialization,  training,  and  fostering  positive  sport and  exercise  experiences  rely  on  attending  to age-related  differences  within  and  between  sexes. Equally  important  is  sensitivity  to  the  myriad  of self-perceptions  cultivated  in  athletic  contexts. A broad sampling of sports throughout childhood and  into  adolescence  is  advocated  for  both  genders as a mechanism for reducing overuse injuries and  burnout  and  also  maximizing  skill  development  for  physical  activities  that  can  be  enjoyed later in life. It will always be important to attend to gender difference stereotypes perpetuated in the media because regardless of data supported differences,  or  lack  thereof,  stereotypes  will  permeate individual  perceptions,  constraining  athletic  and exercise  potential.  Practitioners  are  encouraged to  help  athletes  focus  on  their  personal  potential rather  than  on  social  comparisons  between  or within genders.

References:

  1. Dorn, L. D., Dahl, R. E., Woodward, H. R., & Brio, F. (2006). Defining the boundaries of early adolescence: A users guide to assessing pubertal status and pubertal timing in research with adolescence. Applied Developmental Science, 10, 30–56.
  2. Gill, D., & Kamphoff, C. S. (2010). Gender and cultural considerations. In J. M. Williams (Ed.), Applied sport psychology (pp. 417–439). Boston: McGraw-Hill.
  3. Hyde, J. S. (2005). The gender similarities hypothesis.American Psychologist, 60(6), 581–592.
  4. Malina, R. M., Bourchard, C., & Bar-Or, O. (2004). Growth, maturation and physical activity. Champaign, IL: Human Kinetics.
  5. Thomas, J. R., & French, K. E. (1985). Gender differences across age in motor performance: A metaanalysis. Psychological Bulletin, 98, 260–282.

See also: