Memory and Sport

Memory  is  a  cognitive  module  in  action  organization in which information about objects, movements,  events,  environmental  elements,  and  the action-related  constellations  between  these  entities are stored. Memory could be described as well as  a  process  by  which  such  information  about the  aforementioned  elements  are  encoded,  consolidated,  stored,  and  recalled  for  use  in  attaining  action  goals.  The  structural  organization  of memory  is  based  on  units,  categories,  and  expertise-dependent  order  formation  and  is  therefore strongly related to learning processes.

The study of human memory has a long history, making it one of the oldest and most investigated topics  in  psychology.  The  initial  scientific  studies  of  memory  are  usually  ascribed  to  Hermann Ebbinghaus’s  work  in  1885.  He  investigated  the serial  learning  and  forgetting  of  new  information  (nonsense  syllables)  and  described  the  speed of  forgetting  by  formulating  the  so-called  forgetting  curve.  William  James  was  the  first  scientist to  address  the  topic  of  structure  in  memory  with the  distinction  between  primary  and  secondary memory,  around  the  last  decade  of  the  19th  century. Over the years, the wealth of research assessing  memory  has  greatly  increased.  The  methods used  have  also  evolved  over  time,  spanning  from experimental  approaches  in  healthy  subjects,  to neurobiological and biophysical studies on neuronal cells, to neuropsychological studies on patients with brain damage, and in recent decades to neuroimaging research.

Memory Systems

The  first  memory  studies,  and  over  the  years  the bulk  of  memory  studies,  have  been  conducted  to learn  about  verbal  memory  using  methods  like serial learning, associative learning, free recall, and recognition tests. Through studying such learning processes,  researchers  have  found  that  memory performance  is  constrained  by  both  capacity  and time-related  storage  (duration).  Halfway  through the  20th  century,  the  idea  of  a  distinctive  short-term  memory  (STM)  came  forward,  mostly  supported by the investigations and theoretical work of  Donald  Broadbent  in  the  1950s  and  Richard Atkinson and Richard Shiffrin in the 1960s. From their  points  of  view,  STM  temporarily  allows  a limited storage of information that can be conveniently retrieved without performing control processes like rehearsal. The capacity of information storage  is  limited  as  well.  As  a  famous  example for such capacity limits, in 1956 George A. Miller described the magical number 7 (±2) as the limited number of items that may be stored in STM. He was also able to show that this memory capacity could be  increased  through  processes  like  chunking— that is, grouping items (e.g., digits) into reasonable frames  or  subgroups,  such  as  three-digit-chunks. Based  on  various  experiments  in  the  1960s  using a partial report paradigm, George Sperling defined sensory memory, which refers to holding an iconic mental  picture  of  the  relevant  items  for  approximately 100 to 500 ms after an item is presented. Based on such research lines, Atkinson and Shiffrin were  the  first  to  describe  in  1968  a  multistore model  of  memory  featuring  both  (a)  structure and  (b)  control  processes.  Concerning  structure, the  further  developed  Atkinson–Shiffrin  memory model distinguished between three separate stores: sensory  memory,  STM,  and  long-term  memory (LTM).  Control  processes  are  used  for  encoding, consolidating, and rehearsing information in memory;  improving  memory  capacity;  supporting  the transfer from STM into LTM; and vice versa. This model became an influential framework in cognitive psychology and sport psychology (SP) because it  provided  an  integrative  theoretical  perspective  and  a  testable  background  for  experimental studies.

In the years since the appearance of the original Atkinson–Shiffrin model, many alternative models have  been  developed,  some  of  which  hypothesize only  one  memory  structure.  In  such  models,  sensory  registers  or  short-term  stores  are  hypothesized as temporary states of activation in a unique memory network. These perspectives are similar to the idea of a unified cognitive memory model like Adaptive  Character  of  Thought–Rational  (ACT– R), which was developed over two decades (from the 1970s to the 1990s) by John Robert Anderson. This  model  does  not  define  memory  structures by  their  storage  duration.  Rather,  it  distinguishes two  types  of  information  that  may  be  stored  in memory:  declarative  information,  which  consists of facts about our world, and procedural information,  which  is  the  knowledge  about  how  to  perform actions, for instance writing a letter. ACT–R theory also includes a computational implementation to study principles of human memory through simulation.

Much  effort  has  been  made  in  the  field  of memory  research  to  define  and  describe  working memory.  While  there  are  commonalities  between working  memory  and  STM,  STM  researchers emphasize   time   limitations,   whereas   working memory  researchers  address  storage  limitations from a functional point of view. The term working memory was originally used by George A. Miller, Eugene Galanter, and Karl H. Pribram in 1960 to describe the function of memory in the planning, implementation, and cognitive control of behavior. Because various working memory studies demonstrated that stimuli are differentially processed with respect to the sensory nature of information, Alan D. Baddeley proposed in 1986 a working memory model  with  three  active  components.  The  model distinguishes  between  two  active  slave  systems:  a phonological  loop,  responsible  for  the  storage  of auditory  information,  and  a  visuo-spatial  scratch pad,  which  stores  visual  and  spatial  information. Furthermore,  it  has  been  assumed  that  these  different  types  of  representations  are  controlled  by an attention-based central executive. With the help of  this  model,  it  is  possible  to  explain  why  it  is easier  to  perform  a  dual  task  with  two  differentsensory  channels,  with  for  instance  auditory  and visual information, compared to a dual task with the same kind of information, such as two types of visual  information.  This  model  of  working  memory remains influential even today.

Memory and Performance

Research over the past 40 years has revealed the close  relationship  between  memory  and  performance. For example, the chess studies of Adriaan de Groot and later William G. Chase and Herbert A.  Simon  have  highlighted  differences  in  STM performance  among  expert  and  novice  performers.  These  authors  used  different  methods  to learn about the cognitive mechanisms underlying expert  performance.  De  Groot  used  think-aloud protocols,  in  which  participants  were  instructed to verbalize their thoughts during the task, while Chase  and  Simon  used  a  5-second  recall  task  to learn  about  how  experts  “chunk”  meaningful game  constellations.  These  chess  studies  revealed that  experts  are  better  than  novices  at  storing task-relevant information in STM. However, their superiority is limited to meaningful game constellations.  The  experts’  advantage  is  no  longer  evident  when  players  must  reproduce  meaningless constellations  of  chess  pieces.  Chase  and  Simon developed  a  chunking  theory  and  proposed  that experts  are  better  able  to  memorize  perceptual information because they adopt an organized pattern of information and a large number of chunks in LTM through practice. However, later research has  shown  that  it  is  speculative  to  make  direct statements as to how far chunked-representations in LTM mediate the formation of a chunk pattern in STM. As a consequence, William G. Chase and K.  Anders  Ericsson  developed  at  the  beginning of  the  1980s  the  skilled  memory  theory,  which argues  that  experts’  LTM  structures,  as  well  as their  encoding  and  retrieval  skills,  spill  over  into working  memory,  supporting  its  capacity.  This research perspective was later generalized to studies on the relationship between STM and performance in sport. New studies employing a variety of  tasks  such  as  menu  orders,  medical  expertise, and  text  comprehension  highlighted  the  limits of  skilled  memory  theory.  As  a  consequence,  in1995 Ericsson and Walter Kintsch presented their concept of long-term working memory. From this point  of  view,  experts  do  not  only  use  encoding and  retrieval  skills  but  also  develop  a  retrieval structure to address relevant information patterns in a particular task domain. Skilled performers are able to use long-term working memory to anticipate  future  retrieval  demands  and  identify  the task-relevant information in the environment and in memory. This work has made major contributions to the study of the functional links between retrieval  processes  in  LTM  and  the  coding  and chunking  processes  in  working  memory,  and  it shows that the capacity for task-related information storage also increases as a function of performance in domains like high performance sport.

Further  research  has  addressed  the  storage of  knowledge  components  in  LTM.  As  opposed to  the  focus  on  information  storage  capacity  in working  or  STM,  these  studies  have  been  more concerned with how knowledge is structured and networked  in  LTM.  Hence,  a  major  issue  in  this domain  is  whether  we  can  confirm  that  improving performance is also accompanied by a higher degree  of  hierarchy  in  the  knowledge  structure. A  wide  range  of  methods  and  populations  have been used to study expertise-dependent differences in  the  classification  and  memory  representation of  context-specific  problem  states,  for  instance, among  springboard  divers,  judokas,  triathletes, and weight lifters. Such research has revealed that the nodes of experts’ representation structures in memory  possess  far  more  features  than  those  of novices.

Such nodes of representation in motor memory might involve formats such as propositions, relational  structures  of  many  kinds,  and  concepts. Researchers from various fields such as cognitive psychology,  cognitive  robotics,  and  SP  have  provided  evidence  in  recent  years  of  so-called  basic action  concepts  (BACs)  in  the  control  of  human movements.  BACs  are  based  on  the  cognitive chunking of body postures and movement events concerning  common  functions  in  the  realization of action goals. Based on this definition of representation units in motor memory, Thomas Schack, Franz   Mechsner,   Bettina   Bläsing,   and   other researchers studied the link between memory and motor skills in various kinds of sport and dance to investigate the nature and role of LTM in skilled athletic  performance.  In  high-level  experts,  these representational  frameworks  were  organized  in a  distinctive  hierarchical  treelike  structure,  were remarkably similar between individuals, and were well matched with the functional and biomechanical  demands  of  the  task.  In  comparison,  actionrepresentations  in  low-level  players  and  nonplayers  were  organized  less  hierarchically,  were more  variable  between  persons,  and  were  less well  matched  with  functional  and  biomechanical demands. The results from a number of different studies in domains such as golf, soccer, windsurfing,  volleyball,  gymnastics,  and  dancing  have demonstrated  that  mental  representation  structures in memory are functionally related to motor performance.


  1. Atkinson R. C., & Shiffrin R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89–195). New York: Academic Press.
  2. Baddeley, A. D. (1986). Working memory. Oxford psychology. Oxford, UK: Clarendon Press.
  3. Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progresses in Brain Research, 169, 323–338.
  4. Ericsson, K. A. (1985). Memory skill. Canadian Journal of Psychology, 39, 188–231.
  5. Krakauer, J. W., & Shadmehr, R. (2006). Consolidationof motor memory. Trends in Neuroscience, 29, 58–64.
  6. Schack, T., & Mechsner, F. (2006). Representation ofmotor skills in human long-term-memory.Neuroscience Letters, 391, 77–81.
  7. Starkes, J. L., Deakin, J., Lindley, J. M., & Crisp F. (1987). Motor versus verbal recall of ballet sequences by young expert dancers. Journal of Sport Psychology,9, 222–230.

See also: