Psychophysiology is the scientific study of the connection  between  the  mind  (psychology)  and  the body  (physiology).  Psychophysiology  is  based  on the  premise  that  there  is  two-way  communication between the mind and the body. Thus, physical  changes  in  the  body  can  affect  psychological responses  in  the  mind  and  psychological  experiences may be reflected in physiological measures.

Psychophysiology  has  been  used  extensively  in the  field  of  sport  and  exercise  psychology  (SEP). In  sport  psychology  (SP),  psychophysiological measures  have  been  used  with  athletes  to  understand  physiological  variables  that  are  predictive of  performance  and  to  use  this  understanding  to improve performance. In exercise psychology, scientists have used psychophysiological measures to provide physical evidence of the effects of exercise on  a  variety  of  psychological  experiences  including cognitive function and brain health, stress and anxiety, affect, arousal, and sleep.

Psychophysiological Measures

The psychophysiological measures relevant to SEP are constantly evolving as technological advances allow  for  the  use  of  noninvasive  measures  and theory  advances  our  understanding  of  potential mechanisms  of  relevant  outcomes.  The  measures described here are commonly used in SEP research.

Magnetic Resonance Imaging

psychophysiology-sports-psychologyBy  utilizing  finely  tuned  magnetic  pulses  that disrupt the orientation of atoms in the brain, magnetic  resonance  imaging  (MRI)  is  used  to  assess cerebral  structure.  MRI  is  capable  of  making multiple assessments of the brain at varying depths and  in  different  directional  planes  (sagittal,  coronal,  transverse).  This  makes  it  possible  to  assess the cerebral volume of specific areas of the brain. Exercise  psychologists  have  used  MRI  to  assess changes in cerebral volume in relation to physical activity  (PA)  in  clinical  (e.g.,  Alzheimer’s  disease) and nonclinical populations.

Functional Magnetic Resonance Imaging

The  brain  requires  a  supply  of  oxygenated blood in order to support neuronal activation. In areas of the brain where activation has occurred, blood flow is increased to compensate for the consumption of oxygen and other vital nutrients. The increased blood flow results in a higher concentration  of  oxygenated  hemoglobin  (the  protein  that transports oxygen) in the specific areas of activation  relative  to  less  active  areas.  Functional  magnetic  resonance  imaging  (fMRI)  is  able  to  detect the  different  magnetic  properties  of  oxygenated and  deoxygenated  hemoglobin  in  blood,  and  this blood-oxygen-level-dependent (BOLD) response is used to infer neural activation, which is interpreted as indicative of cognitive activity.

Heart Rate and Heart Rate Variability

Heart  rate  (HR)  provides  a  simple  measure  of arousal  and  affect.  An  increase  in  HR  has  been interpreted as indicative of an increase in psychological arousal or a change in mood. Assessing HR can  be  done  manually  by  palpating  the  wrist  or carotid  artery  and  counting  the  number  of  beats per  minute  (BPM),  by  using  a  heart  monitor,  or by  measuring  electrocardiographic  activity  using electrodes

Heart  rate  variability  (HRV)  refers  to  variations in the time between heartbeats (which is also referred to as the interbeat interval [IBI]). HRV has been  used  to  make  inferences  about  the  control of  HR  by  the  autonomic  nervous  system  (ANS). In  particular,  in  the  SEP  literature,  HRV  is  interpreted relative to high-frequency (parasympathetic activity) and low-frequency (both sympathetic and parasympathetic activity) components.


Electroencephalography  (EEG)  (also  referred to   as   electroencephalographic   activity)   is   the process  of  recording  electrical  activity  across  the scalp.  The  supposition  is  that  the  EEG  activity  is

indicative of the neural activity taking place in the brain. EEG is described as being high in temporal resolution  because  observed  activity  is  related  to current cognitive processes but low in spatial resolution because data represents the firing of a large number of neurons in a general area that may or may  not  be  located  near  the  recording  location. EEG recordings may be used to assess either spontaneous activity or event-related potentials (ERPs). These constructs are described further in the entry titled Electroencephalograph (EEG).


Electromyography  (EMG)  is  used  to  measure skeletal  muscle  activity  (sometimes  referred  to  as tension)  by  taking  measures  of  electrical  activity  either  at  the  skin  using  surface  electrodes  or directly from the muscle using intramuscular electrodes. EMG measures have been used to identify the timing of muscle activation and to provide an indication of levels of arousal, stress, and affect.

Galvanic Skin Response

Galvanic  skin  response  (GSR)  is  measured  by assessing  skin  conductance  (SC).  An  electrical stimulus with an extremely small voltage is applied between  two  electrodes  adhered  to  the  skin,  and the  conductance  between  them  is  recorded.  GSR is directly reflective of moisture level and is interpreted as being indicative of sympathetic nervous system (SNS) activity and arousal.


Cortisol  is  also  referred  to  as  the  “stress  hormone”  and  is  released  when  the  hypothalamicpituitary-adrenal  (HPA)  gland  axis  is  stimulated. When a person is exposed to a stressful stimulus, the brain (i.e., hypothalamus and pituitary gland) signals the adrenal glands to release cortisol from the adrenal glands to prepare the body for fight or flight.  When  it  senses  the  end  of  the  stressor,  the brain  begins  the  reuptake  processes  of  removing the cortisol from the blood stream, which returns the body to homeostasis. Cortisol levels are indicative  of  stress  and  can  be  assessed  in  peripheral blood and in saliva.

In addition to the psychophysiological measures described here, researchers in the field of SEP have also used measures of critical flicker fusion, acoustic  startle  eye  blink  responses,  neurotransmitters  (e.g.,  serotonin,  dopamine),  hormones  (e.g., epinephrine),  and  body  temperature  to  enhance our understanding of mind and body interactions.


  1. Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate Lewis, M. J., & Short, A. L. (2010). Exercise and cardiac regulation: What can electrocardiographic time series tell us? Scandinavian Journal of Medicine & Science in Sports, 20(6), 794–804. doi: 10.1111/j.1600-0838.2010.01150.x
  2. Weinstein, A. M., & Erickson, K. I. (2011). Healthy body equals healthy mind. Generations, 35(2), 92–98.
  3. Zaichkowsky, L. (Ed.). (2012). Psychophysiology and neuroscience [Special issue]. Journal of Clinical Sport Psychology, 6(1).  variability in athletes. Sports Medicine, 33(12), 889–919.
  4. Gatti, R., & De Palo, E. F. (2011). An update: Salivary hormones and physical exercise. Scandinavian Journal of Medicine & Science in Sports, 21(2), 157–169. doi:10.1111/j.1600-0838.2010.01252.x

    See also: