Self-Regulation in Sport

Participation  in  sport  and  exercise  requires  self-regulation.  Examples  of  self-regulation  include an  individual  fighting  the  urge  to  stop  during  an intense exercise class, a golfer trying to ignore feelings  of  excitement  and  focus  on  a  simple  putt  to win a tournament, and a soccer player resisting the desire  to  strike  an  opponent  who  has  repeatedly fouled him. The process by which individuals consciously attempt to constrain unwanted thoughts, feelings,  and  behaviors  and  bring  these  in  line with  ideals  or  goals  is  termed  self-regulation,  or self-control.  The  ability  to  self-regulate  has  been shown to contribute positively to performance and behavior in a number of domains, including sport and exercise.

Athletes  and  exercisers  use  numerous  self-regulation  strategies.  For  example,  in  an  effort to  control  anxiety  before  an  important  game,  a hockey  player  may  engage  in  the  regulation  of his  thoughts  by  using  self-talk  to  reappraise  the importance  of  the  game,  imagine  performing well,  and  distract  himself  by  listening  to  music. An  exerciser  fighting  the  impulse  to  stay  in  and watch  television  instead  of  working  out  may  do so  by  using  motivational  self-statements  (e.g., I will feel much better after exercising), imagining achieving her fitness goals, or seeking the support of a fellow exerciser. The aim in using these strategies is to make achieving an important goal (e.g., play well in the hockey match or maintain fitness) more  likely  by  regulating  thoughts,  feelings,  and behaviors  that  can  detract  from  the  goal  (e.g., worrying  about  the  outcome,  watching  the  TV). Overriding  the  impulses  that  negate  our  goals  is not easy, and to understand why, the core aspects of self-regulation are first outlined here. Following this,  a  discussion  is  provided  about  when  self-regulation may be impaired. The entry concludes with a discussion about how self-regulation can be developed.

Core Aspects of Self-Regulation

Self-regulation  comprises  four  core  aspects:  standards,   monitoring,   strength,   and   motivation. Regulation means a change to bring into line with some  standard,  which  is  not  possible  without keeping track or monitoring current states, and so the  first  two  aspects  are  inextricably  linked.  For example, if a tennis player is to reduce her angry outbursts  on  the  court  in  line  with  the  umpire’s standards,  she  must  monitor  her  thoughts,  feelings, and behaviors to curb displays of frustration following unfavorable line calls. This “curbing” is difficult and, much like any effortful task, requires energy.  Therefore,  self-regulatory  strength  will determine whether the tennis player is capable of avoiding  displays  of  frustration.  Motivation  to change  is  also  necessary;  in  this  example,  if  the outbursts are leading to point penalties, this may increase  the  tennis  player’s  motivation  to  change her  responses.  The  core  aspect  of  self-regulation that has generated most research is the notion that self-regulation requires energy, and as such can be depleted. This proposition is central to the strength model of self-regulation, which is now discussed.

The Strength Model

The   strength   model   was   proposed   by   Roy Baumeister and colleagues in the early 1990s, and its  central  premise  is  that  self-regulation  deteriorates over time from repeated exertions, as if reliant on a finite energy source. A consistent body of research has supported this view. This research has typically used a dual-task paradigm in which one group  of  participants  completes  a  task  requiring self-regulation and one group completes a task that does not. Both groups then complete a second task that does require self-regulation. The key finding is that participants are more likely to perform worse at later tasks requiring self-regulation if they have already  done  a  task  requiring  self-regulation.  To illustrate, participants in one study who first completed  a  thought-suppression  task  requiring  self-regulation (try not to think of a white bear) were less able to resist the temptation of a beer before completing a driving simulator task compared with participants who had first completed a five-minute mental arithmetic task. Further, the energy source required  for  self-regulation  is  depleted  regardless of the type of self-regulation. Of particular interest to sport and exercise participants is that physical performance  can  be  affected  by  the  regulation  of thoughts or emotions. To illustrate, self-regulation on  a  cognitive  task  (e.g.,  Stroop  test)  has  been shown to deplete performance on muscular endurance  tasks  (e.g.,  handgrip  test),  with  participants having  to  work  harder  to  achieve  the  same  level of physical performance. The findings suggest that self-regulatory depletion may cause central fatigue, which can be thought of as the failure of the central  nervous  system  (CNS)  to  drive  the  muscles. Thus,  athletes  and  exercisers  striving  to  control their  thoughts  and  emotions  in  competition  may be more prone to suffer disruptions in endurance performance.

In  sum,  research  consistently  shows  that  after an  initial  bout  of  self-regulation,  subsequent  self-regulation  is  disrupted,  regardless  of  the  sphere. In other words, it matters little whether the initial bout of self-regulation task involves the control of thoughts,  feelings,  or  behaviors;  subsequent  self-regulation in the same, or different, sphere is disrupted. This clearly has implications for sport and exercise  participants.  It  could  explain  why  after a  difficult  day  at  work  in  which  self-regulatory resources  are  depleted,  an  individual  is  less  able to resist the lure of a TV dinner on the couch and misses his exercise class, while a netball player who depletes her self-regulatory resources in regulating anxiety before a crucial game is less able to resist feelings  of  tiredness  then  normal  and  get  up  and down  the  court  as  efficiently  as  usual.  However, to date we do not have any research specifically in sport  and  exercise  settings  exploring  of  depletion of  self-regulatory  resources  may  affect  behavior and performance.

The Importance of Glucose for Self-Regulation

To  this  point,  self-regulation  has  been  described as  a  limited  resource,  with  no  explanation  provided for what is depleted. Most researchers agree that  glucose  is  the  crucial  energy  source  for  self-regulation    and,  specifically,  that  lower  levels  and the inability to transport glucose effectively to the brain  is  associated  with  impaired  self-regulation. This does not mean that the more glucose one has the  better  one  can  self-regulate.  It  simply  means that   self-regulation   consumes   glucose,   and   if enough glucose is replaced, self-regulation will be maintained,  but  if  glucose  is  not  replaced  subsequent self-regulation efforts are more likely to fail.

Glucose is considered as the finite energy source because the availability and effective use of glucose is  paramount  for  effective  brain  function,  and  if the flow of glucose to the brain is inadequate, cerebral functioning is impaired. So it is not surprising that  some  research  has  found  that  self-regulation is  associated  with  changes  in  glucose  levels.  For example,  controlling  attention,  regulating  emotions, and coping with stress have been associated with a reduction in blood glucose levels compared to tasks that require no self-regulation. However, the  data  on  which  these  conclusions  are  based have been questioned. Furthermore, the amount of additional  glucose  consumed  by  the  brain  during the  self-regulation  tasks  employed  in  these  studies,  which  typically  last  a  few  minutes,  has  been proposed to be minimal at 0.2 calories. So, at the present time, there is uncertainty as to the effect of self-regulation tasks on glucose levels.

There is, however, other research that points to the  role  of  glucose.  Low  glucose,  and  inefficient glucose use, has also been shown to be associated with  poor  self-regulation.  For  example,  low  glucose  is  linked  to  less  vigilance,  more  aggression, greater  distractibility,  higher  incidence  of  emotional  disorders,  increased  emotional  outbursts, and impaired performance under stress, while inefficient glucose use is linked to impaired attentional control,  poor  emotion  regulation,  and  greater impulsivity. The administration of glucose has been shown to counteract the effects of prior exertions of  self-regulation.  That  is,  performance  on  a  second task requiring self-regulation is not impaired even  after  completing  a  prior  task  requiring  self-regulation   provided glucose levels are replenished. In  sum,  although  there  is  debate  about  some  of the  currently  available  evidence,  proponents  of the  strength  model  propose  that  self-regulation appears to be susceptible to changes in glucose levels, and self-regulation failure is more likely when glucose levels are low or when glucose is metabolized inefficiently.

To  complement  the  research  supporting  the central  role  of  glucose  in  self-regulation,  and  the conflicting research suggesting it has a much more limited  role,  a  recent  proposal  outlines  an  alternative  way  in  which  glucose  plays  a  role  in  self-regulation  .  This  proposal  is  that  the  distribution of  glucose,  rather  than  glucose  level,  determines effective  self-regulation.  To  explain,  with  ample blood  glucose  available  and  motivation  maintained to persist in a task, self-regulation is likely to  be  successful.  In  the  event  of  low  blood  glucose  availability,  as  long  as  motivation  to  persist is  maintained  and  the  task  is  deemed  important for the individual, self-regulation can still be successful,  because  glucose  is  redirected  to  the  areas of the brain needed for self-regulation. This could explain why even after a difficult day at work, in which self-regulatory resources are depleted, individuals  sufficiently  motivated  to  exercise  will  be able to resist the lure of a TV dinner, and a netball player  who  depletes  her  self-regulatory  resources in  regulating  anxiety  before  a  crucial  game,  but is  highly  motivated  to  win,  is  still  able  to  work as hard as normal on the court. Again, we do not however have any research specifically in sport and exercise settings exploring the interaction between motivation and levels of glucose depletion.

Improving Self-Regulation

Apart  from  supplementing  glucose,  there  are  four other  proposals  for  strengthening  self-regulation: conservation   hypothesis,   motivation,   recovery hypothesis,   and   self-regulation   exercises.   The          conservation hypothesis holds that individuals can reserve some self-regulatory energy if they are made aware  of  a  subsequent  self-regulation  task.  For example, in one study, after an initial task requiring  self-regulation,  participants  performed  a  second task with half informed that there would be a third task. The depletion effects in the second task were  most  pronounced  among  participants  who expected a third task. People do seem able to conserve self-regulation resources for an expected task.

The  power  of  motivation  to  overcome  depletion also suggests that self-regulation is never completely  exhausted  but  temporarily  depleted  until sufficient  motivation  is  generated  to  encourage the  expenditure  of  further  resources.  Laboratory studies indicate that participants can self-regulate successfully if they are offered incentives to do so— even  after  first  being  depleted  of  self-regulation resources.  This  shows  how  self-regulation  can  be maintained in an important competition or meaningful exercise activity.

Sleep also has an important part to play in self-regulation.  Insufficient  sleep  is  linked  to  poorer self-regulatory  capacity,  and  sleep  replenishes self-regulatory  resources.  This  idea  is  similar  to the  conservation  hypothesis  but  is  more  akin  to a recovery hypothesis. Studies have shown that a rest period between self-regulation tasks results in replenishment of resources and that rest and relaxation allay depletion effects.

Repeated   self-regulation   exercises   can   also enhance self-regulatory capacity, much like building  a  muscle  through  physical  training.  Studies have  shown  that,  when  compared  with  a  control group,  participants  who  practice  self-regulation, such as avoiding sweet foods for 2 weeks, improve performance  on  other  self-regulation  tasks.  In other  words,  in  the  short  term,  self-regulation depletes resources, but in the long term, repeated self-regulation  makes  a  person’s  ability  to  self-regulate stronger.


Given  that  sport  and  exercise  environments  frequently give rise to intense emotions and can test a person’s ability to regulate behavior (e.g., effort, decision making [DM]), it is not surprising that self-regulation   should be a crucial aspect of participation in sport and exercise. Failures to self-regulate may be reflected in emotional outbursts, poor decisions,  and  a  reduction  in  physical  performance.

While the ability to self-regulate may be depleted, under  what  circumstances  this  happens  and  the interaction  between  motivation  and  levels  of  glucose is still to be determined by researchers. Further exploration  of  how  self-regulation  can  be  developed  over  time  is  also  warranted  given  its  clear applications to sport and exercise settings.


  1. Baumeister, R. F., & Heatherton, T. F. (1996). Self-regulation  failure: An overview. Psychological Inquiry, 7, 1–15.
  2. Baumeister, R. F., & Tierney, J. (2011). Willpower: Rediscovering the greatest human strength. New York: Penguin Press.
  3. Beedie, C. J., & Lane, A. M. (2012). The role of glucose in self-control: Another look at the evidence and an alternative conceptualization. Personality and Social Psychology Review, 16, 143–153.
  4. Gailliot, M. T., & Baumeister, R. F. (2007). The physiology of willpower: Linking blood glucose to self-control. Personality and Social Psychology Review, 11, 303–326.
  5. Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. D. (2010). Ego depletion and the strength model of self-control: A meta-analysis. Psychological Bulletin, 136, 495–452.
  6. Jones, M. V. (2012). Emotion regulation and performance. In S. Murphy (Ed.), The Oxford handbook of sport and performance psychology (pp. 154–172). New York: Oxford University Press.
  7. Kurzban, R. (2010). Does the brain consume additional glucose during self-control tasks? Evolutionary Psychology, 8, 244–259.

See also: