Social Neuroscience

Exercise  scientist  William  P.  Morgan  often  contrasted  how  exercise  physiologists  and  exercise psychologists  study  the  exercising  human.  The physiologists  were  seen  as  unconcerned  with what happened above the neck, choosing instead to  focus  only  on  physiological  processes  that changed  during  and  after  exercise  and  making the  erroneous  assumption  that  affect,  cognitions, and perceptions were unimportant in understanding  these  processes.  Likewise,  their  psychologist counterparts were seen as unconcerned with what happened below the neck, choosing only to focus on  the  psychological  and/or  social  psychological processes  that  took  place  during  and  after  exercise  and  ignoring  the  contributions  that  physiological  processes  might  yield.  The  reality  is,  of course,  that  the  body  has  a  head  and  the  head has  a  body—physiological  changes  can  influence psychological  processes  and  vice  versa.  Within exercise  and  sport  psychology  (SP),  the  biological  plausibility  of  various  social  psychological  or cognitive  theories  that  dominate  the  field  can  be examined. Questions such as the following can be asked:  How  do  all  of  these  social  psychological constructs  relate  to  biological  function?  Where does  the  “energizing”  capacity  of  goals  come from?  How  might  level  of  self-efficacy  be  manifested  in  the  body?  To  grow  meaningfully  as  a field of study, theoretical development needs to be framed  within  the  context  of  neurophysiological mechanisms.  Social  neuroscience  provides  such  a framework.

Social  neuroscience  is  a  multidisciplinary  field of  study  that  seeks  to  better  understand  how various physiological systems of the human body (e.g., immune, autonomic, central nervous system [CNS])  are  involved  in,  and  influenced  by,  social (e.g., social relationships, social support networks) and  social  psychological  (e.g.,  attitudes,  motivation,  confidence,  intentions,  self-regulation)  factors.  At  its  essence,  social  neuroscience  seeks  to move  beyond  “simple”  biological  explanations for  behavior  by  integrating  influences  across  the physiological,  psychological,  and  social  levels  of interactions  between  the  person  with  his  or  her environment. It is worth noting that although the term neuroscience is currently the term of choice, and seems to impart immediate implicit respect, it is simply an evolution of already existing fields of study (e.g., psychophysiology, psychobiology) with a more explicit focus on the CNS. Understanding these  multilevel  interactions  (e.g.,  physiological, psychological,  social)  can  aid  in  better  organizing  theories  of  how  the  mind  and  body  work.  In essence, social neuroscience is a multilevel analysis approach to studying the problems and questions in exercise and SP. Such multilevel approaches are not  easy  to  apply,  but  the  informational  yield  is far greater than can ever be achieved by continually  examining  phenomena  from  a  single  level  of analysis.

A  social  neuroscientific  approach  is  certainly not impossible. Bradley Hatfield has been engaged in a programmatic line of research aimed at understanding  the  nature  of  superior  cognitive  motor performance  and  how  that  relationship  is  influenced  by  stress.  Emerging  from  his  early  work, Hatfield  described  a  model  of  efficiency  that operates  on  multiple  levels  (i.e.,  neural,  psychological,  physiological,  biomechanical).  He  argued that an environmental challenge can change brain activity, in turn, influencing the emergent psychological state (e.g., self-efficacy, focus, mood). The resulting  psychological  state  then  influences  the motor  control  processes,  autonomic  and  endocrine  system  functions  and  ultimately  results  in qualitative  change  in  physiological  state  and  the movement  outcome.  Hatfield’s  empirical  work demonstrated  how  SP,  motor  control,  cardiovascular  psychophysiology,  and  exercise  physiology  point  toward  “efficiency”  as  a  main  feature of  superior  performance.  Hatfield’s  research  is a  beautiful  illustration  of  what  John  Cacioppo and  his  colleagues  referred  to  as  multiple  levels of  analysis  (i.e.,  a  social  neuroscience  approach). Such a model not only informs the findings of the research that they have carried out but also serves to guide subsequent investigations.

As  another  example,  Art  Kramer  and  Edward McAuley  have  been  involved  in  a  systematic  line of  research  examining  the  influence  of  physical activity (PA), or exercise on cognitive functioning in older adults. The beauty of this work is in the approach. Instead of examining tasks that simply reflect  cognitive  functioning  (which  is  a  broad ranging construct), as so many others have done, their approach was to determine (a) what regions of the human brain are compromised with aging; (b)  what  cognitive  tasks  are  thought  to  be  “controlled”  by  such  brain  regions;  and  (c)  whether exercise  protocols  that  increase  blood  flow  and neuronal  density  (determined  from  previous  animal  studies)  can  influence  performance  on  such cognitive  tasks.  Given  such  an  approach,  it  is not  surprising  that  this  group  found  more  positive effects than are typically reported in this very diverse  literature.  As  this  line  of  research  using what  can  be  classified  as  a  social  neuroscience approach  has  continued,  the  investigations  have yielded  not  only  behavioral  findings  showing positive effects of exercise in previously sedentary older  adults  but  corresponding  changes  in  brain structure  and  function  (via  magnetic  resonance imaging [MRI] and functional magnetic resonance imaging [fMRI]).

Many  other  examples  could  be  cited  to  illustrate  how  “reintegrating”  mind  and  body  meaningfully  in  models  and  theories  provides  a  much greater  understanding  of  behavior.  There  is  far more  to  gain  by  examining  human  behavior  as  a mind–body phenomenon from multiple levels (i.e., social  neuroscience,  psychophysiological,  social– environmental)  than  can  be  gained  by  separating mind and body and/or staying within single levels of analysis. This knowledge yield is no less important in exercise and SP.


  1. Aue, T., Lavelle, L. A., & Cacioppo, J. T. (2009). Great expectations: What can fMRI tell us about psychological phenomena? International Journal of Psychophysiology, 73, 10–16.
  2. Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (2007). Psychophysiological science: Interdisciplinary approaches to classic questions about the mind. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 1–18). New York: Cambridge University Press.
  3. Hatfield, B. D. (2008). E pluribus unum—From DNA to social systems: Understanding physical activity through an integrated perspective. Quest, 60,154–177.
  4. Hatfield, B. D., & Hillman, C. H. (2001). The psychophysiology of sport: A mechanistic understanding of the psychology of superior performance. In R. N. Singer, H. A. Hausenblas, & C. M. Janelle (Eds.), Handbook of sport psychology (pp. 362–386). New York: Wiley.
  5. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400,418–419.

See also: