Response and Sport

All animals must act in their environment in order to survive. They must also react to changes in the environment, for example, when threats or beneficial  opportunities  arise.  Responses  are  defined  as any reaction of the organism to external or internal events. Responses can pertain to one or more levels  of  body  function  ranging  from  cognition, behavior,  and  physiology  to  endocrine  and  biochemical reactions. The overall purpose of human and  animal  responses  is  optimal  adaptation  to environmental demands.

In  sports,  humans  develop  and  hone  sophisticated,  explicit  systems  of  action  and  reaction, often with the sole purpose of competing with one another. At first glance, athletes’ responses seem to be simple. A runner waits for the starter’s gun, and upon perception of the signal, she sprints as fast as possible toward the finish line. However, humans in  general,  and  athletes  in  particular,  respond  in multiple  distinct  ways  to  action-relevant  events such as a starter’s gun. In addition to a behavioral response,  humans  may  respond  physiologically (e.g.,  heart  rate  [HR]  acceleration),  emotionally (e.g.,  stage  fright),  and  cognitively.  An  example of a purely cognitive response can be seen in athlete’s  self-talk  as  a  form  of  attention  regulation. Moreover,  humans  respond  not  only  to  external events  like  a  starter’s  gun  but  also  to  internal events like psychological anticipatory stimuli. The latter can be seen in athletes’ false starts, where the signal is perceived in illusion possibly as a result of athletes’  internal  rehearsal  prior  to  the  gun.  This entry  will  first  introduce  a  fundamental  human response,  the  so-called  orienting  response,  before describing  more  generally  response  characteristics and basic aspects of responses. Then, various response  dimensions  and  response  systems  of  the organism will be introduced before discussing the distinction  between  overt  and  covert  responses. Measures  are  then  presented  that  can  be  used  to evaluate  or  quantify  overt  and  covert  responses. Finally, two specific aspects of responses, interference  with  performance  and  the  value  of  covert responses, will be illustrated.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% OFF with 24START discount code

The  simplest  form  of  a  behavioral  response  is the  reflex.  The  Russian  physiologist  Ivan  Pavlov was  one  of  the  pioneers  in  the  investigation  of involuntary  reflex  actions  and  classical  conditioning,  which  is  a  form  of  learning.  He  believed that  the  involuntary  reflex  action  is  an  unconditioned response—that is, it was seen as an inborn behavioral pattern. This reaction of the organism toward  some  relevant  change  in  the  environment could  be  described  as  the  expression  of  curiosity and, accordingly, it was also termed the “What is this?”  response  by  Ivan  Pavlov.  He  defined  three functions for this reflex: to activate the organism, to  draw  its  attention  toward  the  environmental change,  and  to  prepare  for  the  exploration  of the  associated  section  of  the  environment.  Later, Evgeny Sokolov researched this response more systematically and gave it the name that is still used today, the orienting reflex.

Six  different  aspects  of  environmental  events are known to elicit an orienting reflex or response, some  of  which  may  be  interrelated:  (1)  novelty, (2) reaching a certain intensity threshold, (3) relevance  of  the  event,  (4)  its  associated  surprise, (5)  the  event’s  incongruity  with  the  organism’s experience,  and  (6)  an  induced  action  conflict (i.e., if two actions are required with the same priority). The orienting response is known to habituate (i.e., with repeated presentation of the relevant stimulus, the orienting response becomes weaker). This  is  also  known  as  the  familiarization  of  the organism with the stimulus.

Responses are conceptualized as the individual inclination to react to external or internal stimuli. External  stimuli  represent  events  in  the  environment  that  can  be  perceived  with  the  sensory organs.  Internal  stimuli  are  events  that  originate from  within  the  body  and  can  be  either  somatic or  psychological.  A  full  description  of  responses includes  a  description  of  the  elicited  change  and also  how  long  it  takes  until  the  reacting  system comes back to the pre-response state. An individual’s inclination to react can be temporally variable or stable and may thus be conceptualized as state or trait-dependent.

Responses are seen as interactions of the organism  with  the  environment—that  is,  responses  are a basic way for organisms to cope with their surroundings. Responses describe the way individuals react to external and internal events. At the same time,  responses  also  encompass  reactions  that influence  the  stimulus  situation  or  environment. That is, responses reflect the influence of the environment  on  the  individual  but  also  the  influence the individual has on the environment. Under such a  transactional  view,  individuals  can,  of  course, predict  upcoming  stimuli  and  the  effects  of  their own reactions.

Four  basic  aspects  of  responses  can  be  distinguished.  One  is  the  sensitivity  of  the  organism— for  example,  the  threshold  at  which  a  reaction  is elicited, or the strength, latency, speed, or duration of the reaction. The second aspect is the adaptability of the organism to repetitive stimulation (habituation),  or  even  constant  stimulation  (adaption). The third aspect is the resilience of the organism. Resilience refers to the manner, strength, duration, or continuity of the stimulation. Finally, the organism’s influence on the stimulus or the whole situation refers to changes in, for example, the source of stimulation, psychological processes (e.g., attention),  or  the  whole  situation  in  which  the  event occurred.  These  aspects  also  make  evident  that responses  can  refer  to  short-term  or  long-term reactions of the organism.

Responses can be related to different dimensions and to different systems of the organism. Stimulus related  dimensions  of  responses  refer  to  physical (e.g.,  loudness  or  brightness)  and  psychological aspects  (e.g.,  threat  or  attractiveness).  Responses can also be described by the dimensions of the reaction  itself.  One  can  distinguish,  for  example,  the quality, the intensity, or the course of reacting (e.g., latency, duration, or habituation). Two additional important  dimensions  in  the  characterization  of responses are temporal and situational aspects.

Here,  we  focus  on  a  major  division  among different  response  systems  of  the  organism.  The major response systems are the somatic, biochemical and neurochemical, endocrine, immunological, and  psychological  systems.  The  somatic  response system refers to the central and peripheral nervous system  and  to  the  muscle  system,  whereas  the psychological  system  refers  to  perception,  cognition, memory, emotion, action control, and so on. One major division that cuts across these systems is whether a response is overt or covert.

Overt Versus Covert Responses

Overt responses are characterized by the involvement of movements. That is, they can at least partially  be  evaluated  by  an  outside  observer.  Overt responses  include  gross  body  movements  like starting to run in a competition, small movements, such  as  shivering,  and  minor  or  subtle  movements.  Movement  changes  may  occur  inside  the body—for  example,  by  increased  activity  of  the cardiovascular  system  (resulting  in  an  increased blood pressure [BP]) and may be observed by, for example,  changes  in  skin  coloration  (e.g.,  blushing). Covert responses, in contrast, reflect internal processes  of  information  processing.  By  internal processes,  we  restrict  ourselves  here  to  the  psychological system: processes of perception, recognition,  memory,  thought,  action,  and  emotions. Movements  do  not  constitute  an  integral  part  of covert  responses.  The  dichotomy  of  overt  versus covert  responses  corresponds  roughly  to  bodily or  psychological  reactions  and  may  serve  as  an approximation.  For  other  response  systems  such as the neurochemical or endocrine systems, other classifications may be more appropriate.

Such  a  conceptual  distinction  calls  for  empirical  support—that  is,  the  question  of  how  overt and  covert  responses  can  be  measured  and  how such  measurements  differ  arises.  In  particular, parameters are needed that can capture responses regarding  their  quality,  latency,  duration,  amplitude,  course  of  reaction,  and  their  return  to  the pre-response state.

Overt  responses  involve  some  form  of  movement. Hence, they are prone to observation—that is,  they  can  be  evaluated  by  an  outside  observer. Such  a  form  of  measurement  may  require  a  subsequent,  reliable  form  of  movement  classification.  Depending  on  the  research  topic,  one  must define  relevant  movement  categories  such  as,  for example, running away, approaching an object, or preparing  for  action.  More  specific  or  “smaller” bodily  movements  can  also  be  directly  measured. The  measurement  of  kinematic,  or  temporal  and dynamic (i.e., force), aspects can provide detailed information about physical parameters such as the aforementioned  latency,  duration,  amplitude  of reactions, and so on, by measuring changes in joint angles  or  muscularity,  for  example.  Such  technical measurements provide objective diagnostics of overt responses.

In contrast, covert responses defined as psychological responses cannot be directly measured. To obtain  information  about  covert  responses,  one can  use  the  method  of  self-report,  whereby  the subject  describes  verbally  their  responses.  Again, the  description  can  relate  to  different  dimensions of  the  response,  such  as  stimulus or  reaction-related or different response systems (e.g., somatic or  psychological).  Another,  more  objective  measurement of covert responses can be acquired with psychological  questionnaires.  Information  about the quality of the data, such as reliability and validity,  are  usually  available  with  this  measurement tool.  Psychological  questionnaires  can  be  used  to evaluate trait variables such as hand preference or achievement motivation or state variables such as state anxiety (SA) or emotional arousal. The biological  basis  of  all  such  covert  responses,  at  least the  great  majority,  is  seen  in  the  central  nervous system (CNS). As a consequence, the measurement of  the  activity  of  the  CNS  provides  a  powerful and objective, although less direct way to evaluate covert responses. Of course, the voluntary control of  overt  responses—action  control—also  involves the CNS. To measure activity in the CNS, one can record  central  or  peripheral  physiological  parameters, as these are the closest correlates of psychological responses available to date.

Central Versus Peripheral Measurements

Measures of CNS activity can reflect the reactions of  both  specific  and  unspecific  nervous  subsystems. One example of an unspecific system is the ascending  reticular  activating  system  (ARAS),  a neural network originating in the brain stem that is involved in the regulation of sleep–wake transitions.  Its  function  is  unspecific  as  it  regulates  the overall  arousal  level.  Attention  is  another  unspecific  system  that  is  supported  by  a  front parietal network  in  the  brain’s  cortex  because  external  as well  as  internal  events  from  all  sensory  domains can  attract  attention.  Examples  for  specific  nervous systems are the (neuronal part of the) stress response system, which prepares the organism for strong  bodily  activity,  the  so-called  fight-or-flight reaction; the motor system, with its neural circuits to both the basal ganglia (main function: selection and  initiation  of  voluntary  movements)  and  the cerebellum (main function: control and fine adjustment of movements), is another example of a specific nervous response system.

Depending  on  the  method  of  investigation, one can measure various parameters of responses within  the  different  functional  systems  of  the CNS—for example, changes in an electroencephalograph  (EEG)  frequency  band  that  is  related  to attention.  However,  it  appears  to  be  more  difficult  to  relate  recorded  parameters—that  is,  EEG changes  in  our  example  to  specific  dimensions, whereby the dimensions could be either stimulusor  response-related.  If  a  particular  EEG  response with  a  given  latency  is  recorded,  such  as  after perceiving  a  starter’s  gun,  the  response  may  refer to  the  stimulus  (its  loudness)  to  the  emotional response  (a  startle  reaction),  or  to  the  response preparation—that is, to run as fast as possible.

Today,  CNS  activity  can  be  measured  with  a number of invasive and noninvasive methods that differ  in  their  temporal  and  spatial  measurement precision.  Noninvasive  techniques  include  the electroencephalogram  (EEG)  and  the  magneto encephalogram (MEG), which have a high temporal resolution.  These  methods  measure  the  summed electrical (EEG) or magnetic (MEG) fields, respectively,  of  neural  activity  in  the  brain’s  cortex. Functional  magnetic  resonance  imaging  (fMRI) and near-infrared spectroscopy (NIRS) have a high spatial  resolution  and  measure  indirectly  through changes in blood flow nervous activity; fMRI can do  so  throughout  the  brain.  Finally,  an  invasive technique  that  can  only  be  applied  in  a  patient or  animal  setting  is  the  intracranial  recording  of electric  fields  or  action  potentials—that  is,  using recording electrodes implanted into the brain tissue during  an  operation.  This  method  has  a  superior temporal and spatial resolution.

Another  way  to  evaluate  covert  responses  is to  measure  peripheral  activity.  Some  measures  of peripheral activity are very good indicators of central nervous processes—for example, the orienting response—even though the peripheral systems have specific peripheral functions. Furthermore, recordings are usually performed with techniques that are easier to apply than the aforementioned techniques for recording CNS activity. Useful systems for the evaluation  of  covert  responses  are  the  cardiovascular  system,  the  electrodermal  system—that  is, by  and  large  sweat  gland  activity—and  reactions of  the  eye—for  example,  pupil  dilation  or  eye fixations.  The  cardiovascular  system—for  example,  HR—is  a  peripheral  indicator  of  the  activity in  the  sympathetic  and  parasympathetic  nervous system (PNS). These important parts of the autonomous nervous system are implicated in the stress response. Both parts, the sympathetic and the PNS, normally show complementary reactions, and it is difficult to isolate one from the other. In order to measure  sympathetic  activity,  electrodermal  data is  helpful.  Sweat  glands  are  solely  innervated  by the  sympathetic  part  of  the  autonomous  nervous system,  and  can  thus  serve  as  an  indicator  of  the CNS functions associated with sympathetic activity. Eye movements, finally, are a reliable measure for  various  cognitive  processes.  They  are  informative  for  processes  such  as  visual  search—that is,  the  scan  path  of  the  eyes,  reading,  and  attention.  Visual  search  is  an  important  process,  for example, to capture the distribution of teammates over the playing field. Of particular interest is the pupil response—that is, a change in diameter that is  associated  with  cognitive  workload  and  affective  processing.  These  peripheral  measurements, especially eye movements, can be taken while the participant is fully mobile, which permits an investigation of covert responses in natural settings.

Illustrations in Sport Settings

In  sport  settings,  humans  aim  for  optimal  control  over  their  responses.  This  includes  not  only the  production  of  wanted  behaviors  but  also  the inhibition  and  suppression  of  some  unwanted responses.  Specifically,  responses  ranging  from involuntary  muscle  activity  to  psychological  distractions  due  to  stress  can  severely  interfere  with performance,  particularly  in  competitions.  The latter  is  known  as  choking  under  pressure.  This phenomenon  refers  to  acute  performance  decrements due to attentional malfunctions or perceived pressure  to  achieve.  Another  example  of  interfering responses are the so-called yips in golf. “Yips” are  involuntary  hand  and  arm  movements—that is, jerks, tremors, or freezing that adversely affect the movement trajectory possibly involving a deterioration  of  the  basal  ganglia.  Such  unwanted responses  can  interfere  with  sport  performance, and athletes must train to control them.

Covert responses also play an important role in sports, specifically in mental training. Mental training refers to the imagined reproduction of a movement sequence without any movement execution; it is a cognitive reproduction of the movement. This form of training can lead to performance improvements,  especially  for  cognitive  task  aspects  and if  combined  with  physical  training.  It  is  thought that  the  activation  of  movement  representations in memory below the motor threshold—that is, a covert response—is responsible for later improvements  in  movement  performance.  Thus,  mental training  is  a  form  of  covert  response  to  internal events,  which  plays  an  important  role  in  sport settings.


  1. Barham, R. M., & Boersma, F. J. (1975). Orienting responses in a selection of cognitive tasks. Rotterdam, Netherlands: Rotterdam University Press.
  2. Cacioppo, J. T. (2007). Handbook of psychophysiology. Cambridge, UK: Cambridge University Press. Feltz, D. L., & Landers, D. M. (2007). The effects of mental practice on motor skill learning and performance: A meta-analysis. In D. Smith & M. BarEli (Eds.), Essential readings in sport and exercise psychology (pp. 219–230). Champaign, IL: Human Kinetics.
  3. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.
  4. Janke, W., & Kallus, K. W. (1995). Reaktivität [Reactivity]. In M. Amelang (Ed.), Enzyklopädie der Psychologie (Ser. 8), Differentielle Psychologie und Persönlichkeitsforschung [Differential Psychology and Personality Research] (Bd. 2), Verhaltensund Leistungsunterschiede [Behavioral and Performance Differences] (pp. 1–89). Göttingen, Germany: Hogrefe.
  5. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory.Psychological Bulletin, 136, 943–974.
  6. Yarrow, K., Brown, P., & Krakauer, W. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10, 585–596.

See also: