Information Processing in Sport

During  the  early  part  of  the  20th  century,  psychology was dominated by the school of thought known  as  behaviorism,  which  emphasized  that psychological  processes  could  only  be  examined at the level of observable behaviors. This approach assumed that all behaviors could be understood in terms of simple stimulus–response (S–R) relationships and that references to mental processes were neither useful nor valid. To this extent, the behaviorists viewed all mental processes as a black box whose  internal  workings  are  not  directly  observable,  and  are  inconsequential  to  understanding how  behaviors  are  governed  by  environmental stimuli.

Driven in part by the inability to explain more complex behaviors, the field of psychology underwent a major paradigm shift in the 1950s, which later  became  known  as  the  cognitive  revolution. The  internal  processes  of  the  black  box  once ignored  by  the  behaviorists  now  became  the  primary  interest  in  the  emerging  field  of  cognitive psychology.  Consequently,  understanding  what occurs  inside  the  “box”  (the  human  mind)  was viewed as essential for explaining complex human behaviors.  Coinciding  with  this  new  direction, researchers  began  to  observe  similarities  between human  cognition  and  the  early  computers  of the  time.  Both  humans  and  computers  could  be viewed as general symbol manipulators, which can “take in” information, perform mental operations on the data, and finally output the information via behaviors and actions (e.g., images on a monitor). As a result, references to computers became a central  metaphor  for  exploring  human  cognition,  as it could provide direction and useful analogies for how humans process information mentally.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% OFF with 24START discount code

Humans as Information Processors

Based  on  this  perspective,  humans  are  fundamentally considered to be processors of information, with cognition understood as a sequence of computational  processes.  That  is,  information  in the  environment,  such  as  words  on  a  page,  are taken  in;  stored  in  various  memory  systems;  and processed  via  mental  operations  that  encode, transform,  and  give  meaning  to  the  information through comparison with previously stored information  (i.e.,  memory).  Central  to  this  approach is  the  suggestion  that  all  information  is  encoded as  internal  symbolic  representations  of  the  external   reality.   These   mental   representations   are constructed   for   all   knowledge,   information, ideas, and memories and are the subject of mental operations.

Systematic attempts have been made to study the capabilities and limitations of human information processing.  Just  as  computers  have  certain  limitations regarding speed of processing and how much information  can  be  processed  at  any  one  time, similar  limitations  have  been  investigated  with regards  to  human  information  processing.  Given that  mental  operations  occur  within  a  black  box, and  thus  are  not  directly  observable,  researchers have adapted and created a number of experimental  methods  from  which  overt  behaviors  are  used to infer knowledge about the underlying cognitive processes. Chief among these approaches has been the use of chronometric methods, which emphasize the use of reaction times (RTs) to infer the temporal properties of mental operations. The Dutch physiologist F. C. Donders was the first to use such RT tests to determine the time needed for certain mental operations. Specifically, Donders argued that the duration of mental operations could be determined by  subtracting  the  RTs  of  various  types  of  tests(e.g., simple RT, choice RT, go or no go RT) that have different cognitive processing requirements.

Three Stages of Information Processing

Every conscious action by humans, including those of athletes during action execution, is believed to be a consequence of response selection from long-term  memory  (LTM).  LTM  consists  of  a  hierarchical  structure  neural  network,  which  stores information  after  interacting  with  the  environment.  By  definition,  response  selection  indicates adaptive  behavior  based  upon  the  capacity  to solve problems. This “behavioral effectiveness” is directed by cognitive processes and mental operation.  The  effectiveness  of  these  processes  consists of  the  richness  and  variety  of  perceptions  processed at a given time—that is, the system capacity  to  encode  (store  and  represent)  and  access (retrieve)  information  relevant  to  the  task  being performed.  From  an  information-processing  perspective, motor behaviors consist of encoding relevant environmental cues through the utilization of attentional  strategies,  processing  the  information through  an  ongoing  interaction  between  working memory and LTM, making an action-related decision, and executing the action while leaving room for refinements and modifications. Under pressure, changes  in  each  of  these  components  are  seen. These  changes  are  sequential  in  nature  (i.e.,  they begin  with  the  perceptual  components,  continue with the cognitive components, and end with the motor system).

Based on Donder’s subtractive method, a number of different processing stages are conceived to exist  between  the  presentation  of  a  stimulus  and the  initiation  of  a  response  (see  Schmidt  &  Lee,2011).  Specifically,  at  least  three  information-processing  activities  must  occur  during  RT.  First, the  presentation  of  a  stimulus  must  be  detected and  identified—the  stimulus-identification  stage. Next, the proper response to the stimulus must be chosen—the  response-selection  stage.  Finally,  the selected  response  must  be  prepared  by  the  motor system  and  initiated—the  response-programming stage.  In  the  past  50  years,  a  number  of  studies have  been  conducted  to  determine  the  processing limitations  of  each  of  these  stages  as  well  as  the factors that influence processing performance.

The  stimulus-identification  stage  consists  of the mental operations concerning the sensing and encoding  of  environmental  information.  As  a stimulus contacts the body’s sensory systems, it is taken  in  and  encoded  such  that  the  neurological impulses activate the appropriate mental representation and knowledge associated with the information.  A  number  of  stimuli-related  characteristics have  been  found  to  impact  the  speed  at  which the  system  is  able  to  detect  and  encode  relevant environmental stimuli. The clarity of the stimulus (i.e., how distinct and clear the stimulus appears) has  been  found  to  significantly  impact  the  speed at  which  processing  occurs  during  this  stage. Specifically,  RTs  have  been  found  to  be  slower when the stimulus is less defined compared to when the  stimulus  is  presented  with  increased  clarity (e.g., blurry vs. sharp picture). Similarly, the intensity at which the stimulus is presented impacts the speed  of  identification,  with  more  intense  stimuli resulting  in  faster  RTs.  Likewise,  the  modality  of stimulus presentation has been found to influence the speed at which a stimulus is detected, as tactile and auditory stimuli have been found to result in faster RTs compared to visually presented stimuli. Once the stimulus is detected, it must also be correctly  identified.  In  real  life,  the  stimuli  are  often complex,  and  decisions  must  be  made  regarding a complex set of features. The ability to recognize patterns  or  features  within  the  information  set  is important.  Research  indicates  that  task  familiarity  significantly  influences  the  ability  to  quickly identify  relevant  features  and  patterns  within  the environment.

Following  the  detection  and  identification  of the  stimulus,  a  decision  must  be  made  regarding how  to  respond  (i.e.,  what  action  to  take).  This stage is referred to as the response-selection stage. As with the previous stage, research has identified a  number  of  different  factors  that  influence  the speed and selection of responses during this stage of  processing.  Not  surprisingly,  the  time  it  takes for  a  person  to  decide  upon  a  response  has  been shown to be influenced by the number of possible response  choices  they  have.  As  the  number  of S–R  alternatives  increases,  associated  increases  in choice  RTs  are  observed.  The  mathematical  relationship between RT and the number of response alternatives  is  given  by  Hick’s  law,  which  states that  choice  RT  is  linearly  related  to  the  Log2ofthe number (N) of S–R alternatives. Additionally,the compatibility, or the degree of fit, between the stimulus  and  response  has  been  shown  to  influence RTs. For example, when the presentation of a  stimulus  and  the  required  motor  response  are spatially  congruent  (e.g.,  left  stimulus  and  left response), RTs are quicker compared to when the stimulus  and  response  are  spatially  incongruent (e.g., left stimulus and right response).

The  final  processing  stage  concerns  the  programming and initiation of the selected response, known   as   the   response-programming   stage. During  this  stage,  the  selected  response  must  be compiled  and  transformed  into  overt  muscular activity.  F.  M.  Henry  and  D.  E.  Rogers  demonstrated  that  the  complexity  of  the  movement required during the response is a critical factor in the  latency  of  RTs  during  this  stage.  Specifically, responses  that  require  more  complex  movements show  larger  latencies  before  the  initiation  of  the response.  This  increased  latency  in  responding  is suggested to result from the additional time needed to  prepare  and  program  the  upcoming  motor action. A number of key factors relating to movement  complexity  have  been  identified  which  significantly influence this stage of processing. First, as  the  number  of  movement  parts  increases,  corresponding increases in RT latencies are observed. For instance, responding to a stimulus with a simple  finger  movement  is  initiated  faster  compared to a response in which the whole arm must be utilized.  Additionally,  the  accuracy  requirements  of the movement affect RT. As the precision demands of  the  movement  response  increase,  increases  in RT and movement time (MT) latency are likewise observed. Finally, responses with longer movement durations display increased RT and MT to initiate the motor response.


With  the  emergence  of  cognitive  psychology,  the view  that  humans  are  processors  of  information became  the  dominant  framework  from  which  to consider  mental  operations.  In  this  regard,  mental operations are viewed to consist of a series of information  processing  steps  that  begin  with  the taking  in  of  information  from  the  environment, processing  that  information,  and  then  outputting the  information  via  movement  responses.  Based on this framework, significant advancements have been  made  in  the  areas  of  intelligence,  attention, decision  making  (DM),  linguistics,  and  memory. Although  more  recent  theoretical  perspectives, such as ecological psychology and dynamical systems,  provide  alternative  accounts  of  cognitive functions,  the  theoretical  roots  of  information processing  remain  a  strong  influence  in  modern psychology.


  1. Donders, F. C. (1969). On the speed of mental processes.In W. G. Koster (Ed. & Trans.), Attention and performance II. Amsterdam: North-Holland. (Original work published 1868)
  2. Henry, F. M., & Rogers, D. E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly, 31, 448–458.
  3. Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th ed.). Champaign, IL: Human Kinetics.
  4. Tenenbaum, G. (2003). Expert athletes: An integrated approach to decision making. In J. L. Starkes & K. A. Ericsson (Eds.), Expert performance in sports(pp. 191–218). Champaign, IL: Human Kinetics.
  5. Tenenbaum, G., Hatfield, B., Eklund, R. C., Land, W., Camielo, L., Razon S., et al. (2009). Conceptualframework for studying emotions-cognitionsperformance linkage under conditions which vary in perceived pressure. In M. Raab, J. G. Johnson, &H. Heekeren (Eds.), Progress in brain research: Mind and motion—The bidirectional link between thought and action (pp. 159–178). Oxford, UK: Elsevier.

See also: